The I-BAR protein Ivy1 is an effector of the Rab7 GTPase Ypt7 involved in vacuole membrane homeostasis

Johannes Numrich¹, Marie-Pierre Péli-Gulli², Henning Arit¹, Alessandro Sardu², Janice Griffith³, Tim Levine⁴, Siegfried Engelbrecht-Vandre¹, Fulvio Reggiori³, Claudio De Virgilio² and Christian Ungermann¹,*

ABSTRACT
Membrane fusion at the vacuole depends on a conserved machinery that includes SNAREs, the Rab7 homolog Ypt7 and its effector HOPS. Here, we demonstrate that Ypt7 has an unexpected additional function by controlling membrane homeostasis and nutrient-dependent signaling on the vacuole surface. We show that Ivy1, the yeast homolog of mammalian missing-in-metastasis (MIM), is a vacuolar effector of Ypt7-GTP and interacts with the EGO/ragulator complex, an activator of the target of rapamycin kinase complex 1 (TORC1) on vacuoles. Loss of Ivy1 does not affect EGO vacuolar localization and function. In combination with the deletion of individual subunits of the V-ATPase, however, we observed reduced TORC1 activity and massive enlargement of the vacuolar surface. Consistent with this, Ivy1 localizes to invaginations at the vacuole surface and on liposomes in a phosphoinositide- and Ypt7-GTP-controlled manner, which suggests a role in microautophagy. Our data, thus, reveal that Ivy1 is a novel regulator of vacuole membrane homeostasis with connections to TORC1 signaling.

KEY WORDS: Ivy1, Ypt7, Vps33, TORC1, EGO complex, Vacuole biogenesis

INTRODUCTION
The yeast vacuole is equivalent to the mammalian lysosome and is required to degrade macromolecules, such as proteins and lipids, in its hydrolytic environment and make the resulting metabolites available for the cell.

Several trafficking pathways, such as the endocytic and the AP-3 pathway, as well as autophagy, direct cargo to the vacuole, which is followed by SNARE-mediated fusion (Stroupe et al., 2009). Loss of TORC1 activity results in induction of autophagy that can be divided into macro- and microautophagy (Chen and Klionsky, 2011; Mizushima et al., 2011). Microautophagy is known to sequester specific cargos or cytosolic portions into inward protrusions at the vacuolar or lysosomal surface, and has been described as a mechanism to selectively degrade mitochondria, peroxisomes, lipid droplets, parts of the ER, and parts of the nucleus (Bernales et al., 2006; Böckler and Westermann, 2014; Roberts et al., 2003; Schuck et al., 2014; van Zutphen et al., 2014; Wang et al., 2014). All these processes are largely dependent on the core machinery of autophagy consisting of 18 autophagy-related genes (ATG) genes, but the mechanism how invaginations are formed is poorly understood.

Interestingly, TORC1 activity has been linked to the subunits of the HOPS complex and Rab7 (Flinn et al., 2010; Zurita-Martinez et al., 2007), leading to the question about how trafficking and amino-acid sensing are coordinated. In this study, we identify Ivy1, an inverse (I)-BAR protein, as an effector of Ypt7 on vacuoles, that we link to membrane dynamics and TORC1 activity. Our results show that Ypt7, in complex with Ivy1, could coordinate cellular signaling and/or the regulation of metabolism, and homeostasis of the vacuole membrane.

ABSTRACT
Membrane fusion at the vacuole depends on a conserved machinery that includes SNAREs, the Rab7 homolog Ypt7 and its effector HOPS. Here, we demonstrate that Ypt7 has an unexpected additional function by controlling membrane homeostasis and nutrient-dependent signaling on the vacuole surface. We show that Ivy1, the yeast homolog of mammalian missing-in-metastasis (MIM), is a vacuolar effector of Ypt7-GTP and interacts with the EGO/ragulator complex, an activator of the target of rapamycin kinase complex 1 (TORC1) on vacuoles. Loss of Ivy1 does not affect EGO vacuolar localization and function. In combination with the deletion of individual subunits of the V-ATPase, however, we observed reduced TORC1 activity and massive enlargement of the vacuolar surface. Consistent with this, Ivy1 localizes to invaginations at the vacuole surface and on liposomes in a phosphoinositide- and Ypt7-GTP-controlled manner, which suggests a role in microautophagy. Our data, thus, reveal that Ivy1 is a novel regulator of vacuole membrane homeostasis with connections to TORC1 signaling.

KEY WORDS: Ivy1, Ypt7, Vps33, TORC1, EGO complex, Vacuole biogenesis

INTRODUCTION
The yeast vacuole is equivalent to the mammalian lysosome and is required to degrade macromolecules, such as proteins and lipids, in its hydrolytic environment and make the resulting metabolites available for the cell.

Several trafficking pathways, such as the endocytic and the AP-3 pathway, as well as autophagy, direct cargo to the vacuole, which is followed by SNARE-mediated fusion (Stroupe et al., 2009). Loss of TORC1 activity results in induction of autophagy that can be divided into macro- and microautophagy (Chen and Klionsky, 2011; Mizushima et al., 2011). Microautophagy is known to sequester specific cargos or cytosolic portions into inward protrusions at the vacuolar or lysosomal surface, and has been described as a mechanism to selectively degrade mitochondria, peroxisomes, lipid droplets, parts of the ER, and parts of the nucleus (Bernales et al., 2006; Böckler and Westermann, 2014; Roberts et al., 2003; Schuck et al., 2014; van Zutphen et al., 2014; Wang et al., 2014). All these processes are largely dependent on the core machinery of autophagy consisting of 18 autophagy-related genes (ATG) genes, but the mechanism how invaginations are formed is poorly understood.

Interestingly, TORC1 activity has been linked to the subunits of the HOPS complex and Rab7 (Flinn et al., 2010; Zurita-Martinez et al., 2007), leading to the question about how trafficking and amino-acid sensing are coordinated. In this study, we identify Ivy1, an inverse (I)-BAR protein, as an effector of Ypt7 on vacuoles, that we link to membrane dynamics and TORC1 activity. Our results show that Ypt7, in complex with Ivy1, could coordinate cellular signaling and/or the regulation of metabolism, and homeostasis of the vacuole membrane.

ABSTRACT
Membrane fusion at the vacuole depends on a conserved machinery that includes SNAREs, the Rab7 homolog Ypt7 and its effector HOPS. Here, we demonstrate that Ypt7 has an unexpected additional function by controlling membrane homeostasis and nutrient-dependent signaling on the vacuole surface. We show that Ivy1, the yeast homolog of mammalian missing-in-metastasis (MIM), is a vacuolar effector of Ypt7-GTP and interacts with the EGO/ragulator complex, an activator of the target of rapamycin kinase complex 1 (TORC1) on vacuoles. Loss of Ivy1 does not affect EGO vacuolar localization and function. In combination with the deletion of individual subunits of the V-ATPase, however, we observed reduced TORC1 activity and massive enlargement of the vacuolar surface. Consistent with this, Ivy1 localizes to invaginations at the vacuole surface and on liposomes in a phosphoinositide- and Ypt7-GTP-controlled manner, which suggests a role in microautophagy. Our data, thus, reveal that Ivy1 is a novel regulator of vacuole membrane homeostasis with connections to TORC1 signaling.

KEY WORDS: Ivy1, Ypt7, Vps33, TORC1, EGO complex, Vacuole biogenesis

INTRODUCTION
The yeast vacuole is equivalent to the mammalian lysosome and is required to degrade macromolecules, such as proteins and lipids, in its hydrolytic environment and make the resulting metabolites available for the cell.

Several trafficking pathways, such as the endocytic and the AP-3 pathway, as well as autophagy, direct cargo to the vacuole, which is followed by SNARE-mediated fusion (Stroupe et al., 2009). Loss of TORC1 activity results in induction of autophagy that can be divided into macro- and microautophagy (Chen and Klionsky, 2011; Mizushima et al., 2011). Microautophagy is known to sequester specific cargos or cytosolic portions into inward protrusions at the vacuolar or lysosomal surface, and has been described as a mechanism to selectively degrade mitochondria, peroxisomes, lipid droplets, parts of the ER, and parts of the nucleus (Bernales et al., 2006; Böckler and Westermann, 2014; Roberts et al., 2003; Schuck et al., 2014; van Zutphen et al., 2014; Wang et al., 2014). All these processes are largely dependent on the core machinery of autophagy consisting of 18 autophagy-related genes (ATG) genes, but the mechanism how invaginations are formed is poorly understood.

Interestingly, TORC1 activity has been linked to the subunits of the HOPS complex and Rab7 (Flinn et al., 2010; Zurita-Martinez et al., 2007), leading to the question about how trafficking and amino-acid sensing are coordinated. In this study, we identify Ivy1, an inverse (I)-BAR protein, as an effector of Ypt7 on vacuoles, that we link to membrane dynamics and TORC1 activity. Our results show that Ypt7, in complex with Ivy1, could coordinate cellular signaling and/or the regulation of metabolism, and homeostasis of the vacuole membrane.
Fig. 1. Ivy1 overexpression affects vacuole morphology, fusion, and sorting. (A) Strong overexpression of Ivy1 results in vacuole fragmentation. WT, ivy1Δ, or cells expressing IVY1 from the indicated promoter under the control of the endogenous locus, or from a 2 µ plasmid, were grown in YPD or YPG (for galactose induction). Vacuoles were stained with FM4-64 and examined by fluorescence microscopy. Scale bar: 5 µm. (B) Effect of Ivy1 overexpression on protein sorting. Cells were similar as in A. To monitor AP-3 pathway trafficking, GFP-tagged Snc1 with a C-terminal transmembrane domain of Nyv1 (GNS) was expressed; a deletion of the AP-3 protein Apl5 was used as control. For endocytic trafficking, GFP-tagged Ste3 was monitored in comparison to vps21Δ cells, which have a defect in endocytic sorting. To observe endocytic recycling, GFP-tagged Vps10 was expressed in the indicated strains and compared with vps26Δ cells as a control. Size bar: 5 µm. (C–F) IVY1 overexpression results in the accumulation of multivesicular bodies and cytosolic Ivy1 deposits. Cells expressing Ivy1-GFP from a GPD1 promoter were analyzed by immunoelectron microscopy (see Materials and Methods). Ivy1 was detected by using anti-GFP antibodies and protein A-conjugated gold. MVB, multivesicular bodies; V, vacuole; ER, endoplasmic reticulum. Scale bars: 200 nm. (G) Recombinant Ivy1 inhibits in vitro vacuole fusion. His-tagged Ivy1 or buffer was added to the vacuole fusion reaction carrying vacuole from the two tester strains (BJ3505, pep4Δ and DKY6281, pho8Δ) at the indicated concentrations, and reactions were incubated for 90 min at 26°C before being analyzed. Vacuole fusion assay was performed as described in Materials and Methods. (H) Ivy1 behaves like an Ypt7-specific inhibitor. Vacuole fusion was carried out in the presence of 1 µM Vam7 with and without an ATP-regenerating system, and Ivy1 was added at the indicated concentrations. Reactions were processed as in G.
RESULTS

Ivy1 can affect endocytic protein sorting and vacuole morphology

In a previous study, we used an overexpression screen to search for proteins affecting vacuolar morphology (Arlt et al., 2011). Strong overexpression of S. cerevisiae IVY1 from the 2-µm plasmid resulted in massive vacuole fragmentation (Fig. 1A), which is in agreement with previous findings (Lazar et al., 2002). High cellular levels of this protein also caused defects in protein sorting along the endocytic pathway (Fig. 1B) (Arlt et al., 2011). Although vacuole delivery of cargo of the AP-3 pathway, the artificial fusion between GFP-tagged Snc1 and the transmembrane domain of the vacuolar v-SNARE Nyv1 (GNS), and Vps10 recycling from endosomes were not affected in cells overexpressing IVY1, the endocytosis of the Ste3 receptor was as defective as in vps21A cells, which lack the Rab5-like GTPase of endosomes (Fig. 1B). By using immuno-electron microscopy (IEM), ultrastructural analysis of the strain overexpressing IVY1 revealed strong accumulation of multivesicular bodies proximal to the vacuole (Fig. 1C,D), and localized Ivy1 both on the vacuolar surface and in cytosolic filamentous protein aggregates between the MVBs (Fig. 1D–F). These data suggested that Ivy1, as an interactor of Ypt7 and/or the HOPS subunit Vps33 (Lazar et al., 2002), can control fusion on vacuoles and multivesicular bodies. To test this potential role of Ivy1 in controlling fusion, we purified recombinant Ivy1 and tested its ability to inhibit homotypic vacuole fusion (Fig. 1G,H). To find out whether Ivy1 acts on Ypt7, the split YFP method was used to detect interaction of Ivy1 and Ypt7 in vivo. Wild-type (wt) and vps21Δ cells expressing VN-Ivy1 and VC-Ypt7 were grown to logarithmic growth phase and analyzed by microscopy. To determine the relation of Ivy1 with Ypt7 and HOPS, we traced the GFP-tagged protein in wild-type and various deletion strains. In
wild-type cells, endogenous Ivy1 was present in distinct puncta on the vacuolar surface (Fig. 2A). This localization was not affected by deletion of its putative interaction partner, the HOPS subunit Vps33, or Vps41 – another HOPS subunit (Fig. 2A). In the absence of Ypt7, however, Ivy1 was almost entirely cytosolic, indicating that Ivy1 requires Ypt7 to localize to vacuoles (Fig. 2A). In agreement, overexpression of IVY1 in cells that express GFP-tagged Ypt7 resulted in a strong relocation of Ypt7 to dot-like structures that colocalized with the lipophilic dye FM4-64 (Fig. 2B). This suggests that the excess amount of Ivy1 traps Ypt7 at endosomes, which is in agreement with the observed accumulation of MVBS following ultrastructural analyses (Fig. 1C,D). In contrast, the subcellular distribution of Vps33 remained unaffected by overexpression of Ivy1 (Fig. 2B), indicating that the reported Vps33 interaction with Ivy1 (Lazar et al., 2002) is not important for intracellular function of Ivy1.

To test for direct interaction between Ivy1 and Ypt7, we incubated recombinant Ivy1 with purified GST-tagged Ypt7 or Vps21 that had been preloaded with GDP or GTPyS. Ivy1 was efficiently and specifically isolated together with Ypt7-GTP (Fig. 2C). The interaction is comparable to the interaction between Ypt7 and HOPS, which was analyzed in parallel to confirm that Ypt7 was loaded with GTP (Fig. 2C, bottom panel). To further verify the close proximity between Ivy1 and Ypt7, we used bimolecular fluorescence complementation, also known and hereafter referred to as split-YFP assay, where each protein is tagged either with the N-terminal (VN) or C-terminal (VC) segment of the Venus variant of GFP (Sung and Huh, 2007). The YFP-signal was, indeed, observed on vacuoles of wild-type cells, which have defective signal when Ivy1-VC was expressed with Gtr2-VN or Ego3-VN, and a weak signal when it was expressed with Iml1-VN (Fig. 3D), the identified GTPase activating protein (GAP) of Gtr1 (Bar-Peled et al., 2013; Panchaud et al., 2013). VN-Gtr2 did not yield any signal, suggesting that the position of the tag could bias the read-out of this assay. Together, these data suggest that Ivy1, indeed, localized to the vicinity of the EGO complex. To further substantiate these findings, we used the membrane-based split-ubiquitin two-hybrid system (Nikko and Andre, 2007) and, again, observed interactions of Ivy1 with components of the EGO complex, such as Gtr1 (Fig. 3E). Gtr2 was not detected here, presumably because of the same tag-related problem as in the split-YFP assay. Additionally, Ivy1 strongly interacted with itself (Fig. 3E), indicating that the protein forms dimers or oligomers as suggested by the IEM analysis (Fig. 1C,D). We conclude that Ivy1 is, indeed, proximal to the EGO complex on the vacuole, which might provide a functional link.

Ivy1 interacts with the EGO-LAMTOR complex on vacuoles

If the Ypt7-dependent localization of Ivy1 were required to control fusion at the vacuole, one would expect colocalization with selected marker proteins of organelles involved in these events. Apart from the colocalization with Ypt7, we did not detect overlapping localization with the mCherry-tagged ESCRT-III subunit Snf7, the vacuolar Vac8 protein found at nuclear vacuolar junction (NVJs) (Pan et al., 2000) or with mitochondria, which form a recently identified contact site with vacuoles termed vCLAMP (Elbaz-Alon et al., 2014; Hönscher et al., 2014) (Fig. 3A). Similarly, the Atg8-positive pre-autophagosomal structure (PAS) (seen in Fig. 3A, bottom images, in the cell to the left) did not overlap with Ivy1 on vacuoles (shown in enlargement).

As our data did not agree with a role for Ivy1 in endosomal fusion, we searched for other proteins that colocalized on the vacuole. We previously have characterized the palmitoylated Ego1/Meh1 protein on vacuoles (Hou et al., 2005), which is part of the EGO complex comprising Ego1, Ego3, and the two Rag GTPases Gtr1 and Gtr2 (Dubouloz et al., 2005; Levine et al., 2013; Zhang et al., 2012). The yeast EGO complex and mammalian LAMTOR both activate TORC1 in the presence of amino acids (Bar-Peled et al., 2012; Binda et al., 2009; Bonfils et al., 2012; Dubouloz et al., 2005). Interestingly, the HOPS subunit Vps39, which requires Ypt7 for its vacuolar localization (Bröcker et al., 2012), colocalizes with the EGO complex and has been implicated in EGO function (Binda et al., 2009). We, therefore, localized Ivy1 relative to EGO components, and observed both Ivy1 and EGO components in the same domains on vacuoles (Fig. 3B) that also localized with Ypt7 and Vps39 (Fig. 3C) (Binda et al., 2009).

To test for close proximity to the EGO complex, we utilized again the split-YFP approach. Within this analysis, we observed a clear and specific signal when Ivy1-VC was expressed with Gtr2-VN or
Fig. 3. Ivy1 colocalizes and interacts with the EGO complex. (A) Distribution of Ivy1-GFP on vacuoles relative to other vacuolar markers, membrane contact sites and other organelles. Cells expressing Ivy1-GFP and the indicated RFP-tagged marker proteins [Ypt7=vacuole, Snf7=endosomes, Vac8=nuclear vacuolar junctions (NVJ), OM45=mitochondria, Vps39=vCLAMP, Atg8=preautophagosomal membrane (PAS)] were grown to logarithmic growth phase and analyzed by microscopy. Scale bar: 5 µm. Regarding its localization in respect to Atg8, Ivy1 was never found in the same focal plane as Atg8, so we concluded that they do not colocalize. Vps39 was overexpressed to facilitate visualization of vCLAMPs (Elbaz-Alon et al., 2014; Hönsc et al., 2014). (B) Ivy1 colocalizes with subunits of the EGO complex. Cells expressing Ivy1-3xmCherry and GFP-tagged subunits of the EGO complex (Ego1, Ego3, Gtr1, Gtr2) were grown to logarithmic growth phase and analyzed by microscopy. Scale bar: 5 µm. (C) The EGO complex colocalizes with Ypt7 and Vps39. Cells expressing GFP-tagged subunits of the EGO complex and either mCherry-Ypt7 or mCherry-Vps39 were grown to logarithmic growth and analyzed by microscopy. Scale bar: 5 µm. (D) Ivy1 interacts with subunits of the EGO complex and Iml1 in a split-YFP assay. Interactions were tested using cells expressing VN-tagged Gtr2, Ego3 or Iml1 without or with Ivy1-VC. Interactions were confirmed by microscopy. Note that VN-Gtr2 reflects N-terminal tagging, whereas Gtr2-VN C-terminal tagging. Scale bar: 5 µm. (E) Interaction of Ivy1 with subunits of the EGO complex. Interactions were tested by monitoring β-galactosidase activities (in Miller units) of cells expressing the N-terminal part of ubiquitin (Nub)-Ivy1 from the pCAB vector and the C-terminal part of ubiquitin (Cub)-tagged subunits of the EGO complex from the pPR3-N vector. Interactions of Ivy1 (bait) with EGOC components (prey) were assessed using the split-ubiquitin-based membrane two-hybrid system (Dualsystems Biotech AG). For each combination tested, β-galactosidase activity is expressed in Miller units as mean ± s.d. from three independent transformants. As bait and prey control, empty pCABWT and pDL2-Alg5 vectors were used, respectively. (F) Localization of Ego3 in the absence of Ivy1. Ego3, tagged with GFP, was monitored relative to FM4-64 stained vacuoles. Scale bar: 5 µm. (G) Localization of Ivy1 in an EGO mutant background. Ivy1 was tagged with GFP in the ego3Δ strain that was stained with FM4-64, and localization was monitored as in A. Scale bar: 5 µm.
because processing of the vacuolar alkaline phosphatase was still functional in ivy1Δ vma16Δ cells, but lost when the general peptidase Pep4 is absent (Fig. 4G). This suggests that the loss of TORC1 activity analyzed under these conditions is probably not owing to a problem in the acidification of the vacuole lumen. Furthermore, localization of the EGO complex is not influenced in the ivy1Δ vma16Δ mutant (Fig. 4H).

Ivy1 maintains vacuole membrane homeostasis

To unravel the reason for the growth defect on rapamycin and the reduced TORC1 activity, we analyzed the morphology of ivy1Δ vma16Δ vacuoles. Surprisingly, we noticed strong accumulation of membranous material in the vacuole lumen, which was stained by the lipophilic dye FM4-64 (Fig. 5A). Similar observations were made when a vma6Δ deletion with a defect in a V-ATPase subunit was combined with ivy1Δ, indicating that the general loss of V-ATPase activity causes in the same phenotype. To understand the origin of these membranous structures, we examined the double mutant at ultrastructural level by electron microscopy and observed numerous large vesicles whose content was indistinguishable from the cytoplasm within the vacuole lumen (Fig. 5B). We hypothesize that these structures are autophagosomes and, therefore, analyzed the efficiency of autophagy by monitoring the processing of GFP-Atg8 to free GFP – a standard method to assess the progression of this pathway (Klionsky et al., 2012) – when cells were starved by nitrogen (Fig. 5C). Whereas wild-type and ivy1Δ cells showed similar profiles of GFP-Atg8 processing, autophagy was already induced in vma16Δ cells during vegetative growth (as indicated by free GFP at the first time point) and increased over time. However, additional deletion of IVY1 did not enhance this process. We, therefore, asked whether the vesicular structures in the vacuole of ivy1Δ vma16Δ cells are the results of the fusion of autophagosomes. When we monitored these cells by fluorescence microscopy, we noticed that, when stained with the vacuole-specific dye CMAC, the vacuole lumen but not the vesicular structures was positive for GFP-Atg8, a marker protein for fusion of autophagosomes. When we monitored these cells by fluorescence microscopy, we noticed that, when stained with the vacuole-specific dye CMAC, the vacuole lumen but not the vesicular structures was positive for GFP-Atg8, a marker protein for autophagosomes (Fig. 5D). This suggests that these vesicles are connected to the vacuolar surface. To examine this in more detail, we recorded Z-stacks of vacuoles, and confirmed that the apparent vesicular structures are, indeed, continuous with the vacuole limiting membrane (Fig. 5E, supplementary material Movie S1). Thus, ivy1Δ vma16Δ vacuoles do not accumulate vesicles inside the lumen but have an enlarged and invaginated vacuolar surface.

As the deletion of VMA16 already leads to increase of basal autophagy, we asked whether the same phenotype also occurs when we combine EGO mutants (which have lesser TORC1 activity) with the deletion of ivy1. Neither loss of EGO activity in an ivy1Δ mutant nor the increase of EGO activity (due to deletion of IML1) in a ivy1Δ vma16Δ double mutant affected the expanded membrane phenotype (Fig. 5F). This suggests that Ivy1 is more directly involved in
Fig. 5. Ivy1 is required for vacuole membrane homeostasis. (A) Morphological analysis of the ivy1Δ vma16Δ double mutants. Vacuoles of indicated strains were stained for FM4-64 and analyzed by microscopy. Scale bar: 5 µm. (B) Ultrastructural analysis of ivy1Δ vma16Δ cells. Wt and ivy1Δ vma16Δ double mutant cells were analyzed by electron microscopy (see Materials and Methods). Scale bar: 200 nm top left panel; 500 nm other panels. V, vacuole; PM, plasma membrane; ER, endoplasmic reticulum; N, nucleus. (C) Analysis of autophagy. wt, ivy1Δ, vma16Δ and ivy1Δ vma16Δ cells were grown to logarithmic growth phase, then centrifuged and grown for the indicated time in nitrogen-depleted medium. Induction of autophagy was assessed by following processing of GFP-Atg8. Quantification of the ratio of GFP to GFP-Atg8 at each time point is displayed to the left, corresponding gels are shown to the right. (D) GFP-Atg8 localizes within vacuoles of ivy1Δ vma16Δ cells. ivy1Δ vma16Δ cells expressing GFP-Atg8 were grown to logarithmic growth phase and stained with CMAC. Figure shows different examples of vacuoles to display the vacuole variety. Scale bar: 5 µm. (E) Analysis of the vacuole morphology of ivy1Δ vma16Δ cells. Z-stacks of ten focal planes were recorded and five central layers are shown. Images were processed using ImageJ software. The color mode fire was used to highlight the relative differences in signal intensities within the focal planes. Scale bar: 2.5 µm. (F) Analysis of vacuole invaginations in mutants. The shown double mutants were analyzed for vacuole morphology as in A. The indicated strains were also analyzed for TOR activity as described in Fig. 4E-F. The ivy1Δ vma6Δ mutant was selected as the strongest example (++).
maintaining the vacuolar membrane homeostasis and, thus, affects TORC1 activity.

Self-organization of Ivy1 is influenced by Ypt7 and phosphoinositides

To understand the role of Ivy1 in membrane dynamics, we searched for putative homologues by using HHpred Software (toolkit.tuebingen.mpg.de/hhpred), and readily identified the mammalian proteins IRSp53 and missing-in-metastasis (MIM) (Mattila et al., 2007). These proteins share with Ivy1 a central I-BAR/IMD domain, but the homology does not extend to regions outside this motif (Fig. 6A). IRSp53 and MIM are both involved in the formation of filopodia of mammalian cells, and are able to induce inward protrusions on liposomes (Becalska et al., 2013; Mattila et al., 2007). To analyze the
As Ivy1 binds directly to Ypt7-GTP (Fig. 2C) and interacts with phosphoinositides, such as phosphatidylinositol (3)-phosphate (PI3P) (Fig. 6E), we tested the influence of either factor on the behavior of Ivy1 on GUVs. When we incubated Ivy1 with GUVs that lacked phosphoinositides, Ivy1 was homogenously distributed over the entire membrane (Fig. 6F). Again, domain localization of Ivy1 was observed in the presence of PI3P but also in that of phosphatidylinositol (3,5)-bisphosphate (PI-3,5-P2), which are both present on the yeast vacuoles (Fig. 6G,H, top rows). We then tagged Ypt7 at its C terminus with hexahistidine and added this fusion protein to GUVs containing DOGS-NTA lipids (1,2-dioleoyl-sn-glycero-3-(N-(5-amino-1-carboxyethyl)iminodiacetic acid)succinyl)), and Ypt7 was correctly recruited to the GUV membrane. Interestingly, the addition of Ypt7-GTP prevented the domain formation of Ivy1 on membranes (Fig. 6G,H, bottom rows). This suggests that the amount of Ypt7-GTP and of PI3P on vacuole membranes affects the degree of Ivy1-dependent domain formation and, thus, function in vivo.

Ivy1 localizes to invaginations at the vacuolar surface

Owing to its behavior in vitro, we postulated that Ivy1 has a similar role in vivo. We, thus, analyzed the effect of the mutation of eight positively charged residues within the I-BAR domain had on Ivy1 function; the residues were identified on the basis of homology modeling, by using the IRSp53 structure (Lee et al., 2007) as a template. This mutated version of Ivy1 was unable to complement the defects in an ivy1Δ vma16A mutant regarding vacuolar morphology and rapamycin hypersensitivity (Fig. 7A,B), suggesting that these residues within the predicted I-BAR domain are important for Ivy1 function.

Furthermore, we hypothesized that Ivy1 acts during microautophagy that had previously been observed in response to nitrogen starvation (Muller et al., 2000) or in situations of stress, such as starvation (Toulmay and Prinz, 2013; Wang et al., 2014). During starvation, we – indeed – found Ivy1-GFP in microautophagic invaginations in 18% of the vacuoles (Fig. 7C). Recent work indicated that the vacuole membrane forms distinct domains upon prolonged starvation, and Ivy1 was identified as one of the marker proteins for such domains (Toulmay and Prinz, 2013; Wang et al., 2014). The localization to these domains is strongly affected by the alteration of PI3P levels (Fig. 7D). If Ivy1 were to accumulate on such domains and induce a negative curvature, it might be able to regulate membrane content, stabilize negative curvature, or support membrane protein degradation. We reasoned that prolonged heat would induce sufficient stress to vacuoles in order to distinguish between these options and, thus, followed the fate of Ivy1-GFP before and after prolonged heat shock (Fig. 7E-G). We, indeed, observed a dramatic relocation of Ivy1-GFP from a dot-like location on the vacuole membrane to domains with high negative curvature (Fig. 7F), which became stable over time and are probably not microautophagy intermediates but, rather, are required to stabilize the vacuole during heat shock. Their appearance was similar to the sterol-rich domains recently described for vacuoles of cells in stationary phase (Toulmay and Prinz, 2013; Wang et al., 2014). However, Ivy1 is not necessary for the induction or maintenance of these membrane invaginations and domain formation (marked here with Ego1-GFP), because the ivy1Δ mutant shows the same vacuolar morphology under conditions of heat shock (Fig. 7H). Importantly, this assay shows that Ivy1 has, indeed, a preference for negative curvature as predicted from its domain structure.

Fig. 6. Ivy1 localizes to membrane domains in a PI3P-dependent manner.
(A) Alignment of Ivy1 with other I-BAR proteins based on a HHPred search. Top, model of the I-BAR domain of MIM taken from (Mattila et al., 2007). Bottom, domain organization of Ivy1, IRSp53 and MIM. In addition to the I-BAR domain, the latter two proteins contain SH3 and/or WH2 domains that are involved in protein-protein interactions. (B) Purification of His-mGFP-tagged Ivy1. Ivy1 was purified through a His-tag, eluted with SUMO protease and then applied to a superdex 200 column. Fractions were analyzed for protein content by using UV spectroscopy (top) and purity by SDS-PAGE and Coomassie staining (bottom); mAU, milliabsorbance units. (C) Domain formation by Ivy1. mGFP-Ivy1 was titrated to giant unilamellar vesicle (GUV) membranes that contained rhodamine-phosphatidylethanolamine (Rhd-DHPE) as a lipid dye. Domain formation was observed only at low concentrations of Ivy1. The bottom panel shows an enlarged section of a domain of a corresponding GUV shown in the top panel. Z-stacks of up to 50 focal planes, taken in 500 nm steps, were recorded to monitor domain localization of Ivy1. GUVs had the following lipid composition: 52.6 mol% dioleoyl (DO)-phosphatidylcholine (PC), 18 mol% DO-phosphatidylethanolamine (PE), 5 mol% DO-phosphatidylserine (PS), 8 mol% ergosterol, 3 mol% PI3P, PI-4,5-P2, 10 mol% DOGS-NTA, 0.4 mol% Rhd-DHPE. Scale bar: 10 µm. (D) Close-up view of Ivy1 domains on a GUV. 20 focal planes of a GUV, recorded in 500 nm steps, were merged into a single plane by maximum intensity projection. Composition and analysis was as in C. Scale bar: 10 µm. (E) Phospholipid preference of Ivy1. His-Ivy1 was incubated with a nitrocellulose strip displaying the selected head groups of the indicated phospholipids, then washed and decorated with an antibody against Ivy1. LPA, lysophosphatidic acid; LPC, lysophosphatidylcholine; PI, phosphatidylinositol; PE, phosphatidylethanolamine; PC, phosphatidylcholine; S1P, sphingosine-1-phosphate; PA, phosphatidic acid; PS, phosphatidylserine. For phosphatidylinositol phosphates such as PI3P, phosphatidyl-inositol-phosphates such as PI3P, phosphatidyl-inositol-3-phosphate, the phosphorylated residues of the head group are indicated. (F-G) Effect of phosphoinositides and Ypt7 on Ivy1-mediated domain formation on GUVs. Ypt7 with a C-terminal hexahistidine tag was labeled by addition of the maleimide derivative of Alexa-Fluor-647 and targeted onto the membranes through DOGS-NTA lipids, purified by a small gel-filtration column and added to GUVs prior to Ivy1 addition. Domain localization of mGFP-Ivy1 was monitored as before. Where indicated, Ypt7 was present in the GUV preparation. Lipid composition was as follows: 55.6 mol% DOPC, 18 mol% DOPE, DOPS 5 mol%, 8 mol% ergosterol, 3 mol% PI3P, or PI-3,5-P2, 10 mol% DOGS-NTA, 0.4 mol% Rhd-DHPE. Scale bar: 5 µm. (H) Purification of His-Ivy1 with a N-terminal mGFP tag that – unlike the isolated I-BAR domain – worked well during the biochemical characterization (our unpublished observations). Gel filtration of the purified protein resulted in a substantial high-molecular-mass peak indicative of multimerization, and a clearly distinct fraction of dimeric protein. As BAR domain proteins form dimers in solution (Frost et al., 2009; Mattila et al., 2007), we used this fraction for further experiments (Fig. 6B).

To analyze Ivy1, we prepared giant unilamellar vesicles (GUVs) by using a vacuolar lipid composition that supports efficient fusion of liposomes that carry vacuolar SNAREs (Mima and Wickner, 2009; Mima et al., 2008; Stroupe et al., 2009; Zinser et al., 1991). We then added Ivy1 to those GUVs. Strikingly, Ivy1 localized to specific domains that often contained invaginated or deformed membranes (Fig. 6C). Localization of Ivy1 to the GUV surface did not require Ypt7, presumably because its ability to recognize the membrane surface itself, even though Ypt7 has a profound effect on the behavior of Ivy1 on GUVs. When we incubated Ivy1 with GUVs that lacked phosphoinositides, Ivy1 was homogenously distributed over the entire membrane (Fig. 6F). Again, domain localization of Ivy1 was observed in the presence of PI3P but also in that of phosphatidylinositol (3,5)-bisphosphate (PI-3,5-P2), which are both present on the yeast vacuoles (Fig. 6G,H, top rows). We then tagged Ypt7 at its C terminus with hexahistidine and added this fusion protein to GUVs containing DOGS-NTA lipids (1,2-dioleyl-sn-glycero-3-(N-(5-amino-1-carboxyethyl)iminodiacetic acid)succinyl)), and Ypt7 was correctly recruited to the GUV membrane. Interestingly, the addition of Ypt7-GTP prevented the domain formation of Ivy1 on membranes (Fig. 6G,H, bottom rows). This suggests that the amount of Ypt7-GTP and of PI3P on vacuole membranes affects the degree of Ivy1-dependent domain formation and, thus, function in vivo.
Fig. 7. *Ivy1* marks sites of negative curvature on vacuoles involved in the maintenance of membrane homeostasis. (A,B) Analysis of I-BAR mutations in *Ivy1*. *Ivy1* was modeled onto the I-BAR structure of IRSp53, a close homolog of MIM (pdb code: 2YKT) via swissmodel (www.swissmodel.expasy.org). Eight positively charged residues along the postulated membrane interaction site (K102, 106, 203, 209, 216, 227, R220, 231) were mutated to alanine and mutants were analyzed as GFP-tagged proteins for growth on rapamycin (A) and localization in *ivy1Δ* (B, top) and *ivy1Δ vma16Δ* cells (B, bottom). Scale bar: 5 µm. (C) *Ivy1*-GFP localizes to vacuolar invaginations upon nitrogen starvation. Cells expressing *Ivy1*-GFP were grown to logarithmic growth phase, stained with FM4-64, starved for nitrogen for 1 h and subsequently analyzed by fluorescence microscopy. In 18% of counted vacuoles (*n*=200) *Ivy1*-GFP was observed on microautophagic invaginations. (D) *Ivy1* localization to dots depends on PI3P availability. A temperature sensitive vps34Δ strain expressing *Ivy1*-GFP was grown at 26°C or at 37°C for one hour and then analyzed by fluorescence microscopy. Scale bar: 5 µm. (E–G) *Ivy1*-GFP localizes to invaginations at the vacuole upon heat stress. Cells expressing *Ivy1*-GFP were grown to logarithmic growth phase, stained with FM4-64 and analyzed by fluorescence microscopy before and after 1 h heat shock at 42°C. Overviews are seen in E. The enlarged picture of a single vacuole shown in F highlights vesicular structure at the vacuole surface positive for *Ivy1*. Eight focal planes of a Z-stack of a single vacuole are shown in G. Scale bar in E, 5 µm; in F,G 2.5 µm; in consecutive stacks of F, 1.5 µm. (H) Invaginations form in the absence of *Ivy1*. Ego1-GFP was followed relative to FM4-64-stained vacuoles by fluorescence microscopy in wild-type (wt) and *ivy1Δ* cells. Scale bar: 2.5 µm.
Our *in vitro* experiments showed that Ivy1 interacts with several phosphoinositides (Fig. 6E), and that the presence of PI3P or PI-3,5-P₂ might affect the behavior of Ivy1 on membranes (Fig. 6F–H). We, thus, analyzed mutants affecting PI₃ levels on vacuoles and noticed that the deletion of Fab1 – the PI-3,5-kinase of yeast – which results in a very large vacuole (Gary et al., 1998), led to a redistribution of Ivy1-GFP from a dot-like to a more homogenous localization along the vacuole surface (see below). The same large vacuole phenotype has been observed in several other mutants involved in PI-3,5-P₂ biogenesis, such as *agn1Δ, vac1Δ* and *fig4Δ*, suggesting that membrane turnover is be defective (Duex et al., 2006; Gary et al., 2002). We, thus, asked whether Ivy1 is a marker that can be used to observe membrane remodeling upon Fab1 induction. For this, we placed FAB1 under control of the inducible GAL1 promoter, which represses Fab1 production in the presence of glucose and mimics the deletion phenotype (Fig. 8A) (Gary et al., 1998). Like in the deletion phenotype, Ivy1-GFP was distributed over the entire vacuole surface (Fig. 8A). When we induced Fab1 by adding galactose, we frequently observed Ivy1 in dots within the vacuole lumen (Fig. 8A,B). As these structures did not stain well with FM4-64, we are not yet sure whether Ivy1 just localizes to or induces these structures. However, the location of Ivy1, again, implies a role in microautophagy events. Ivy1 seems to be induced during starvation, which also results in accumulation of lipid droplets proximal to the vacuole (Wang et al., 2014). Therefore, we asked whether Ivy1 localization correlates with alterations of the vacuolar surface. We grew cells for several days and observed Ivy1 localization (Fig. 8C). Whereas Ivy1 remained in dots until the diauxic shift, it accumulated in domains on the vacuole during stationary phase. Some Ivy1 protein became visible within the vacuole lumen after 4 days, suggesting that a small fraction of Ivy1 is degraded during microautophagy, which is known to occur in cells in stationary phase. However, the main fraction of Ivy1 protein remained stable within the cell, and we did not observe massive degradation of Ivy1 under these circumstances. Together, our data provide evidence that the I-BAR protein Ivy1 is involved in vacuole membrane homeostasis. Moreover, it is probably the first protein that can be specifically used as a marker protein in order to visualize microautophagy processes at the vacuole.

DISCUSSION

Our data demonstrate that Ivy1 is a novel Ypt7 effector, which controls membrane homeostasis of the yeast vacuole. Ivy1 requires Ypt7 for its recruitment to vacuoles, and its function is controlled by the PI3P content on the surface of this organelle. Ivy1 strongly colocalizes and interacts with the EGO complex, suggesting that it is involved in regulating TORC1 activity. Its main function seems to be the regulation of membrane homeostasis of the vacuole, probably together with other proteins. In agreement with this notion, we observed that the concomitant loss of Ivy1 and the V-ATPase subunits results in a strong expansion of the vacuolar surface with multiple invaginations, which indicates that Ivy1 is a factor required to reduce vacuolar membrane. Taking GUV membranes as a model system, we further show that Ivy1 can self-organize into distinct membrane microcompartments that require PI3P and are modulated by the Ypt7 content (Fig. 6). This analysis also revealed that Ivy1 has a preference for negative curvature. To understand its organization *in vivo*, we searched for conditions, where vacuoles would require such proteins and identified Ivy1 in vacuolar domains of negative curvature that formed during microautophagy, starvation and response to heat shock. The close connection to Ypt7 and the EGO complex suggest that Ivy1 connects trafficking and signaling processes in the context of vacuole membrane biogenesis.

Ivy1 was initially thought to be implicated in endocytic trafficking because its overproduction resulted in vacuole fragmentation and the appearance of MVBs (Lazar et al., 2002). However, we consider this unlikely because – even though we also observed a similar impact on vacuole biogenesis and endocytic trafficking (Fig. 1) – this defect required massive overexpression of Ivy1, which leads to an accumulation of Ivy1 deposits proximal to MVBs and vacuoles (Fig. 1C–F). Similarly, the inhibition of the vacuole fusion assay is the simple consequence of the ability of Ivy1 to bind Ypt7-GTP on vacuoles. In the same study, the HOPS complex suggests that Ivy1 is involved in vacuole biogenesis and endocytic trafficking, which occurs in cells in stationary phase. We grew cells for several days and observed Ivy1 in dots within the vacuole lumen (Fig. 8A,B). As these structures did not stain well with FM4-64, we are not yet sure whether Ivy1 just localizes to or induces these structures. However, the location of Ivy1, again, implies a role in microautophagy events. Ivy1 seems to be induced during starvation, which also results in accumulation of lipid droplets proximal to the vacuole (Wang et al., 2014). Therefore, we asked whether Ivy1 localization correlates with alterations of the vacuolar surface. We grew cells for several days and observed Ivy1 localization (Fig. 8C). Whereas Ivy1 remained in dots until the diauxic shift, it accumulated in domains on the vacuole during stationary phase. Some Ivy1 protein became visible within the vacuole lumen after 4 days, suggesting that a small fraction of Ivy1 is degraded during microautophagy, which is known to occur in cells in stationary phase. However, the main fraction of Ivy1 protein remained stable within the cell, and we did not observe massive degradation of Ivy1 under these circumstances. Together, our data provide evidence that the I-BAR protein Ivy1 is involved in vacuole membrane homeostasis. Moreover, it is probably the first protein that can be specifically used as a marker protein in order to visualize microautophagy processes at the vacuole.

DISCUSSION

Our data demonstrate that Ivy1 is a novel Ypt7 effector, which controls membrane homeostasis of the yeast vacuole. Ivy1 requires Ypt7 for its recruitment to vacuoles, and its function is controlled by the PI3P content on the surface of this organelle. Ivy1 strongly colocalizes and interacts with the EGO complex, suggesting that it is involved in regulating TORC1 activity. Its main function seems to be the regulation of membrane homeostasis of the vacuole, probably together with other proteins. In agreement with this notion, we observed that the concomitant loss of Ivy1 and the V-ATPase subunits results in a strong expansion of the vacuolar surface with multiple invaginations, which indicates that Ivy1 is a factor required to reduce vacuolar membrane. Taking GUV membranes as a model system, we further show that Ivy1 can self-organize into distinct membrane microcompartments that require PI3P and are modulated by the Ypt7 content (Fig. 6). This analysis also revealed that Ivy1 has a preference for negative curvature. To understand its organization *in vivo*, we searched for conditions, where vacuoles would require such proteins and identified Ivy1 in vacuolar domains of negative curvature that formed during microautophagy, starvation and response to heat shock. The close connection to Ypt7 and the EGO complex suggest that Ivy1 connects trafficking and signaling processes in the context of vacuole membrane biogenesis.
supplementary material Table S2. By cloning a SUMO-tag in frame with the His-tag. All plasmids are listed in a pCOLAHS vector. Afterwards, mGFP was cloned in front of generate mGFP-tagged Ivy1. E. coli and cloned into S. cerevisiae Table S1. For cloning, Yeast strains and plasmids MATERIALS AND METHODS membrane homeostasis as an adaptation to nutrient availability. resulting in an attractive model outlining the regulation of vacuolar nutrient-sensing signal cascades and microautophagy (Fig. 8D), vacuoles. Moreover, they suggest a crosstalk between one of the main to the Rab7-like Ypt7 GTPase and, possibly, to the PI3P content on issue in more detail.

Future analyses of Ivy1 mutants will be necessary to dissect this problem further. Neither Ivy1 overexpression nor the addition of full-length Ivy1 to GUVs (Fig. 6) seemed to result in the induction of protrusions. We, thus, consider it more likely that Ivy1 follows and, possibly, promotes negative membrane curvature, rather than inducing it. Future analyses of Ivy1 mutants will be necessary to dissect this issue in more detail.

In summary, our data provide a molecular link of an I-BAR protein to the Rab7-like Ypt7 GTPase and, possibly, to the PI3P content on vacuoles. Moreover, they suggest a crosstalk between one of the main nutrient-sensing signal cascades and microautophagy (Fig. 8D), resulting in an attractive model outlining the regulation of vacuolar membrane homeostasis as an adaptation to nutrient availability.

MATERIALS AND METHODS Yeast strains and plasmids All yeast strains used in this study are listed in supplementary material Table S1. For cloning, IVY1 coding sequence was amplified from S. cerevisiae genomic DNA with Phusion polymerase (Thermo Scientific) and cloned into E. coli expression vectors. Plasmids were transformed into E. coli BL21 (DE3) Rosetta cells.

To overproduce Ivy1 from E. coli with an N-terminal His-tag, the coding region of IVY1 was cloned into the BamHI/XhoI sites of a pET32c vector. To generate mGFP-tagged Ivy1, IVY1 was cloned into the BamHI/XhoI sites of a pCOLAHS vector. Afterwards, mGFP was cloned in front of IVY1 into the BamHI/BglII sites of the pCOLAHS vector, that had been digested with Phusion polymerase (Thermo Scientific) HI. The pCOLAHS vector was derived from the pCOLADuet1 vector, that had been digested with HI/XhoI sites of the pET32c vector. To

Vacuole fusion assay

The fusion assay employs two sets of isolated vacuoles. One lacks the alkaline phosphatase Pho8 but contains a full set of proteases, whereas the other contains the alkaline phosphatase as the inactive pro-form owing to the absence of the Pep4-protease. During fusion, lumenal mixing results in cleavage and activation of Pho8, which can be assayed spectrophotometrically (Cabrer and Ungermann, 2008). Vacuoles were purified from strains BJ3505 (pep4Δ) and DKY6281 (pho8Δ). Fusion reactions containing 3 µg of each vacuole type were performed in fusion reaction buffer (10 mM PIPES/KOH pH 6.8, 5 mM MgCl2, 125 mM KCl, 0.2 M sorbitol), containing an ATP-regenerating system. Reactions were incubated for 90 min at 26°C, and then developed as described (LaGrassa and Ungermann, 2005).

Fluorescence microscopy

For microscopy, yeast cells were grown in yeast peptone dextrose (YPD) medium, yeast peptone galactose (YPG) or in selective medium to an OD600 of about 1, collected by centrifugation (3 min at 4000 g, 20°C), washed with synthetic medium containing either glucose or galactose, and immediately analyzed by using fluorescence microscopy. Staining of the cells with FM4-64 was performed as described (LaGrassa and Ungermann, 2005). In brief, cells were incubated with 30 µM FM4-64 for 30 min, washed with the corresponding medium and further incubated for 1.5 h in fresh medium. Images were acquired using a Leica DM5500 B microscope equipped with a SPOT Pursuit camera with GFP, RFP, FM4-64 and DIC (differential interference contrast) filters or using a DeltaVision Elite fluorescence microscope (Applied Precision, Issaquah, WA) equipped with a CoolSNAP HQ Camera using FITC, YFP, TRITC, DAPI and mCherry filters. Images acquired with the Leica microscope were deconvolved using the Metamorph software. Images acquired with DeltaVision Elite were
deconvolved using SoftWorx. Pictures were processed using Adobe Photoshop CS4 or ImageJ.

Bimolecular fluorescence complementation assay
The tagging of genes of interest for the bimolecular fluorescence complementation assay (BiFC, also known as split-YFP approach) was carried out as described (Sung and Huh, 2007). In brief, proteins of interest are tagged either with the N-terminus or the C-terminus of the Venus fluorescent protein. Complementation of Venus fluorescence was examined by using the YFP fluorescence channel.

Electron microscopy analyses
Examination of yeast cells by electron microscopy and IEM was carried out as described (Griffith et al., 2008). For the IEM, cells were fixed, embedded in gelatin and cryo-sectioned. This was followed by immune-labeling with an anti-GFP antibody (Abcam) and by protein-A–gold incubation to localize Ivy1. Sections were analysed by using an electron microscope (1200 EX; JEOL).

Measurement of TORC1 activity through phosphorylation of Sch9
TORC1 activity was measured as described (Urban et al., 2007). Phosphorylation of the C-terminal part of HA-tagged Sch9 was used as readout for TORC1 activity. In brief, whole-protein extracts were prepared, treated with 2-nitro-5-thiocyanoanisole acid (NCTC), and further analyzed by SDS-PAGE and western blotting. Sch9 was visualized by decoration with anti-HA. Quantification of TORC1 activity was carried out as previously reported (Binda et al., 2009). Wild-type TORC1 activity was set to 100%.

Rab GTPase pulldown
The glutathione–Rab pull-down experiment was done as described before (Markgraf et al., 2009). recombinant GST-tagged Rab proteins were loaded with 1 mM GDP or GTPS in 20 mM HEPES/NaOH pH 7.4. 150 µg Rab proteins were mixed with GSH beads. Rab proteins were incubated with recombinant His-tagged IVY1 (or control proteins) for 1 h at 4°C on a nutator mixer. Beads were washed three times with 20 mM HEPES/NaOH, 100 mM NaCl, 1 mM MgCl₂, 0.1% (w/v) Triton X-100, and proteins were eluted with 20 mM HEPES/NaOH, 100 mM NaCl, 1 mM MgCl₂, 0.1% (w/v) TritonX-100+20 mM EDTA. The eluates were then precipitated with trichloroacetic acid (TCA), and analyzed by SDS-PAGE and western blotting. As a loading control, the bound GST–Rab GTPase was eluted from the beads by boiling in sample buffer, and analyzed by SDS-PAGE and Coomassie staining.

Purification of recombinant Ivy1
E. coli BL21 (DE3) Rosetta cells containing the IVY1-plasmids or YPT7/VPS21-plasmids were grown until OD₆₀₀ of 0.8; expression was induced with 0.5 mM IPTG overnight at 16°C. Cells were harvested and lysed in 50 mM Tris/HCl pH 7.5, 150 mM NaCl, 1 mM PMSF, 1 mM protease inhibitor cocktail; 1×=0.1 mg/ml of leupeptin, 1 mM o-phenanthroline, 0.5 mg/ml of pepstatin A, 0.1 mM Pefabloc. Lysates were centrifuged 15 min at 30,000 g and the cleared supernatant was added to Ni-NTA beads for His-tagged protein or to GSH-beads for GST-tagged protein, followed by an incubation for 1 h at 4°C on a nutator mixer. Ni-NTA-beads were washed with 25 ml buffer containing 20 mM imidazole. His-tagged Ivy1 was eluted from beads with buffer containing 0.3 M imidazole. His-SUMO-mGFP-Ivy1 was eluted using the SUMO protease. GST-Ivy1 was eluted using buffer containing 15 mM reduced glutathione. The buffer was finally exchanged by dialyzing the eluted proteins against 10 mM PIPES/KOH pH 6.8, 200 mM sorbitol, 150 mM KCl, 5 mM MgCl₂ containing 10% glycerol.

Preparation of giant unilamellar vesicles (GUVs)
Giant unilamellar vesicles (GUVs) were prepared by electroformation as described before (Romanov et al., 2012). Different lipid compositions were used as indicated in the figure legends. Lipids were from Avanti polar lipids and Echelon Biosciences.

Tandem affinity purification
Tandem affinity purification (TAP) of HOPS complex was carried out as described (Ostrowicz et al., 2010; Puig et al., 2001). In brief, logarithmically growing yeast cells were lysed in 50 mM HEPES/NaOH pH 7.4, 150 mM NaCl, 1.5 mM MgCl₂, centrifuged for 10 min at 20,000 g and 1 h at 100,000 g. The cleared lysate was incubated for 1 h with IgG Sepharose beads. Bound protein was eluted using TEV protease. Eluates were analyzed using SDS-PAGE and western blotting.

Acknowledgements
We thank Markus Babst for suggestions and members of the Ungermann lab for discussions. This work was supported by the DFG (UN111/7-1), the SFB 944 (project P11) and by the Hans-Mühlenhoff foundation (to C.U.), and the Swiss National Foundation (to C.D.V.). F.R. is supported by ECHO (70059.003), ALW Open Program (821.02.017 and 822.02.014), DFG-NWO cooperation (DN28-303) and ZonMW VICI (016.130.606) grants.

Competing interests
The authors declare no competing or financial interests.

Author contributions
J.N., M.P.G., H.A., A.S. and J.G. performed experiments and analyzed data; T.L. and S.E.V. performed bioinformatic analyses; J.N., F.R., C.D.V. and C.U. devised the study, analyzed experiments and wrote the manuscript.

Funding
This research received no specific grant from any funding agency in the public, commercial or not-for-profit sectors.

Supplementary material
Supplementary material available online at http://jcs.biologists.org/lookup/suppl?doi=10.1242/jcs.164905/-/DC1

References
Cabrera, M., Ostrowicz, C. W., Marie, M., LaGrassa, T. J., Reggiori, F. and Ungermann, C. (2009). Vps41 phosphorylation and the Rab Ypt7 control the...

Movie S1. Movie showing vacuoles of \textit{vma16\Delta ivy1\Delta} mutant.

25 focal planes of vacuole of a \textit{vma16\Delta ivy1\Delta} strain, stained with FM4-64, were recorded in 200 nm steps, and images were merged into a 3D projection using the ImageJ software.
Supplemental material (Numrich et al.)

Table S1. Saccharomyces cerevisiae strains used in this study

<table>
<thead>
<tr>
<th>Strain</th>
<th>Genotype</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>CUY1/BJ3505</td>
<td>MATa pep4Δ::HIS3 prb1-Δ1.6R lys2-208 trp1-Δ101 ura3-52 gal2</td>
<td>(Haas et al., 1995)</td>
</tr>
<tr>
<td>CUY2/DKY6281</td>
<td>MATalpha leu2-3 leu2-112 ura3-52 his3-Δ200 trp1-Δ101 lys2-801 suc2-Δ9 pho8::TRP1</td>
<td>(Haas, 1995)</td>
</tr>
<tr>
<td>CUY100/BY4727</td>
<td>MATalpha his3Δ200 leu2Δ0 lys2Δ0 met15Δ0 trp1Δ63 ura3Δ0</td>
<td>EUROSCARF</td>
</tr>
<tr>
<td>CUY478</td>
<td>CUY764 ypt7Δ::kanMX</td>
<td>EUROSCARF</td>
</tr>
<tr>
<td>CUY482</td>
<td>CUY764 vps21Δ::kanMX</td>
<td>EUROSCARF</td>
</tr>
<tr>
<td>CUY485</td>
<td>CUY764 apl5Δ::kanMX</td>
<td>EUROSCARF</td>
</tr>
<tr>
<td>CUY506</td>
<td>CUY764 vma6Δ::kanMX</td>
<td>EUROSCARF</td>
</tr>
<tr>
<td>CUY513</td>
<td>CUY764 fab1Δ::kanMX</td>
<td>EUROSCARF</td>
</tr>
<tr>
<td>CUY518</td>
<td>CUY764 tor1Δ::kanMX</td>
<td>EUROSCARF</td>
</tr>
<tr>
<td>CUY520</td>
<td>CUY764 vps33Δ::kanMX</td>
<td>EUROSCARF</td>
</tr>
<tr>
<td>CUY764/BY4741</td>
<td>MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0</td>
<td>EUROSCARF</td>
</tr>
<tr>
<td>CUY820</td>
<td>CUY764 YPT7::HIS5-PHO5pr-Myc-GFP</td>
<td>This study</td>
</tr>
<tr>
<td>CUY1996</td>
<td>CUY764 atg18Δ::kanMX</td>
<td>EUROSCARF</td>
</tr>
<tr>
<td>CUY2280</td>
<td>CUY764 vma2Δ::kanMX</td>
<td>EUROSCARF</td>
</tr>
<tr>
<td>CUY3024</td>
<td>CUY105 VPS33::GFP-hphNT1</td>
<td>This study</td>
</tr>
<tr>
<td>CUY4029</td>
<td>CUY764 vps26Δ::kanMX</td>
<td>This study</td>
</tr>
<tr>
<td>CUY4571</td>
<td>CUY105 VPS10-GFP::kanMX</td>
<td>This study</td>
</tr>
<tr>
<td>CUY4573</td>
<td>CUY4029 VPS10::GFP-HIS3</td>
<td>(Arlt et al., 2011)</td>
</tr>
<tr>
<td>CUY4839</td>
<td>CUY764 gtr1Δ::kanMX</td>
<td>EUROSCARF</td>
</tr>
<tr>
<td>CUY4841</td>
<td>CUY764 ego1Δ::kanMX</td>
<td>EUROSCARF</td>
</tr>
<tr>
<td>CUY5071</td>
<td>CUY764 ego3Δ::kanMX</td>
<td>EUROSCARF</td>
</tr>
<tr>
<td>CUY5423</td>
<td>CUY764 ivy1Δ::kanMX</td>
<td>EUROSCARF</td>
</tr>
<tr>
<td>CUY5424</td>
<td>CUY100 IVY1::GFP-hphNT1</td>
<td>This study</td>
</tr>
<tr>
<td>CUY6008</td>
<td>CUY5424 IVY1pr::kanMX-GPDpr</td>
<td>This study</td>
</tr>
<tr>
<td>CUY6619</td>
<td>CUY5424 vps39Δ::natNT2</td>
<td>This study</td>
</tr>
<tr>
<td>CUY6620</td>
<td>CUY5424 vps41Δ::natNT2</td>
<td>This study</td>
</tr>
<tr>
<td>CUY6990</td>
<td>CUY100 IVY1pr::natNT2-GALpr-3HA-Ivy1</td>
<td>This study</td>
</tr>
<tr>
<td>CUY6992</td>
<td>CUY100 IVY1pr::natNT2-GPDpr-3HA-Ivy1</td>
<td>This study</td>
</tr>
<tr>
<td>CUY6620</td>
<td>CUY5424 vps41Δ::natNT2</td>
<td>This study</td>
</tr>
<tr>
<td>CUY6430</td>
<td>CUY520 IVY1::GFP-hphNT1</td>
<td>This study</td>
</tr>
<tr>
<td>CUY7147</td>
<td>CUY820 IVY1pr::natNT2-GPDpr-3HA</td>
<td>This study</td>
</tr>
<tr>
<td>CUY7150</td>
<td>CUY3024 IVY1pr::natNT2-GPDpr-3HA</td>
<td>This study</td>
</tr>
<tr>
<td>CUY7331</td>
<td>CUY4571 ivy1Δ::natNT2</td>
<td>This study</td>
</tr>
<tr>
<td>CUY7332</td>
<td>CUY4571 IVY1pr::natNT2-GALpr-3HA</td>
<td>This study</td>
</tr>
<tr>
<td>CUY7333</td>
<td>CUY4571 IVY1pr::natNT2-GPDpr-3HA</td>
<td>This study</td>
</tr>
<tr>
<td>CUY7367</td>
<td>CUY100 YPT7pr::TRP1-CE1pr-VC</td>
<td>This study</td>
</tr>
<tr>
<td>CUY7779</td>
<td>CUY5424 SNF7::MARS-KanMX</td>
<td>This study</td>
</tr>
<tr>
<td>CUY7891</td>
<td>CUY5424 YPT7pr::natNT2-ADHpr-mCherry-Ypt7</td>
<td>This study</td>
</tr>
</tbody>
</table>
CUY7940 CUY764 GTR1::GFP-MET15 This study
CUY7941 CUY764 GTR2::GFP-MET15 This study
CUY7942 CUY764 EGO1::GFP-MET15 This study
CUY8218 CUY764 EGO3::GFP-MET15 This study
CUY8250 CUY7367 IVYpr::HIS-CET1pr-VN This study
CUY8251 CUY8250 vps11a::URA3 This study
CUY8728 CUY5424 VAC8::3xmCherry-natNT2 This study
CUY8753 CUY5424 OM45::3xmCherry-natNT2 This study
CUY8784 CUY7942 IVY1::3xmCherry-natNT2 This study
CUY8785 CUY8218 IVY1::3xmCherry-natNT2 This study
CUY8786 CUY7940 IVY1::3xmCherry-natNT2 This study
CUY8787 CUY7941 IVY1::3xmCherry-natNT2 This study
CUY9074 CUY2125 ivy1::natNT2 This study
CUY9105 CUY5423 EGO1::GFP-hphNT1 This study
CUY9106 CUY5423 EGO3::GFP-hphNT1 This study
CUY9107 CUY5423 GTR1::GFP-hphNT1 This study
CUY9108 CUY5423 GTR2::GFP-hphNT1 This study
CUY9114 CUY4841 ivy1::natNT2 This study
CUY9116 CUY4841 vma16::natNT2 This study
CUY9117 CUY518 vma16::natNT2 This study
CUY9189 CUY513 ivy1::natNT2 This study
CUY9190 CUY1996 ivy1::natNT2 This study
CUY9392 CUY7942 YPT7pr::ADHpr-mCherry This study
CUY9393 CUY7942 VPS39pr::ADHpr-mCherry This study
CUY9394 CUY8218 YPT7pr::ADHpr-mCherry This study
CUY9395 CUY8218 VPS39pr::ADHpr-mCherry This study
CUY9396 CUY7940 YPT7pr::ADHpr-mCherry This study
CUY9397 CUY7940 VPS39pr::ADHpr-mCherry This study
CUY9398 CUY7941 YPT7pr::ADHpr-mCherry This study
CUY9399 CUY7941 VPS39pr::ADHpr-mCherry This study
CUY9420 CUY5423 pep4 delta::hphNT1 This study
KT1960 ura3-52 leu2 his3 trp1 (Pedruzzi et al., 2003)
CUY9468 KT1960 EGO3::VN-HIS3 This study
CUY9470 KT1960 GTR2::VN-HIS3 This study
CUY9471 KT1960 GTR2pr::HIS3-CET-VN This study
CUY9475 KT1960 IML1::VN-HIS3 This study
CUY9482 CUY5424 VPS39pr::TEFpr-mCherry This study
CUY9483 MATa his3A1 leu2A0 met15A0 This study
CUY9484 MATa his3A1 leu2A0 met15A0 This study
CUY9485 MATa his3A1 leu2A0 met15A0 This study
CUY9486 MATa his3A1 leu2A0 met15A0 This study
CUY9514 CUY9470 IVY1::VC-TRP1 This study
CUY9515 CUY9471 IVY1::VC-TRP1 This study
CUY9528 CUY9468 IVY1::VC-TRP1 This study
CUY9529 CUY9475 IVY1::VC-TRP1 This study
NM51 MATa; his3Δ200, trp1-901, leu2-3,112, ade2, Biotech AG
LYS2::(lexAop)4-HIS3, ura3::(lexAop)8- lacZ,
ade2::(lexAop)8- ADE2, GAL4
YAS041 MATa; his3Δ1 leu2A0 This study
LYP1::STE3pr-LEU2 ivy1::URA3-MX4

NMY51 MATa; his3Δ200, trp1-901, leu2-3,112, ade2,
LYS2::(lexAop)4-HIS3, ura3::(lexAop)8- lacZ,
ade2::(lexAop)8- ADE2, GAL4
YAS041 MATa; his3Δ1 leu2A0 This study
LYP1::STE3pr-LEU2 ivy1::URA3-MX4
Table S2. Plasmids used in this study

<table>
<thead>
<tr>
<th>Plasmid</th>
<th>Name</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. coli expression plasmids</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1476</td>
<td>pGEX4T3-VPS21</td>
<td>(Markgraf et al., 2009)</td>
</tr>
<tr>
<td>2135</td>
<td>pGEX4T3-YPT7</td>
<td>(Markgraf et al., 2009)</td>
</tr>
<tr>
<td>2481</td>
<td>pET32c-IVY1</td>
<td>This study</td>
</tr>
<tr>
<td>3799</td>
<td>pCOLA-HS-mGFP-IVY1</td>
<td>This study</td>
</tr>
<tr>
<td>Yeast expression plasmids</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pBG1805-GAL1-IVY1</td>
<td>2µ, GAL1-IVY1, URA3</td>
<td>Euroscarf library</td>
</tr>
<tr>
<td>pRS415-STE3-GFP</td>
<td>CEN, NOP1-STE3-GFP, LEU2</td>
<td>Ungermann laboratory</td>
</tr>
<tr>
<td>pRS415 GNS</td>
<td>CEN, TPI-GFP-Nyg1-Snc1, LEU2</td>
<td>(Reggiori et al., 2000)</td>
</tr>
<tr>
<td>pDL2-Alg5</td>
<td>2µ, ADH1-HA-NUBG, TRP1</td>
<td>Dualsystems</td>
</tr>
<tr>
<td>pCabWT</td>
<td>CEN, CYC1-CUB-LEXA, LEU2</td>
<td>Dualsystems</td>
</tr>
<tr>
<td>pCabWT-IVY1</td>
<td>CEN, CYC1-IVY1-CUB-LEXA, LEU2</td>
<td>This study</td>
</tr>
<tr>
<td>pPR3-N</td>
<td>2µ, CYC1-NUBG-HA, TRP1</td>
<td>Dualsystems</td>
</tr>
<tr>
<td>pPR3-N-IVY1</td>
<td>2µ, CYC1-NUBG-HA-IVY1, TRP1</td>
<td>This study</td>
</tr>
<tr>
<td>pPR3-N-GTR1-WT</td>
<td>2µ, CYC1-NUBG-HA-GTR1-WT, TRP1</td>
<td>(Binda et al., 2009)</td>
</tr>
<tr>
<td>pPR3-N-GTR1-Q65L</td>
<td>2µ, CYC1-NUBG-HA-GTR1-Q65L, TRP1</td>
<td>(Binda et al., 2009)</td>
</tr>
<tr>
<td>pPR3-N-GTR2-WT</td>
<td>2µ, CYC1-NUBG-HA-GTR2-WT, TRP1</td>
<td>This study</td>
</tr>
<tr>
<td>pPR3-N-EGO1</td>
<td>2µ, CYC1-NUBG-HA-EGO1, TRP1</td>
<td>(Binda et al., 2009)</td>
</tr>
<tr>
<td>pPR3-N-EGO3</td>
<td>2µ, CYC1-NUBG-HA-EGO3, TRP1</td>
<td>(Zhang et al., 2012)</td>
</tr>
<tr>
<td>pRS415</td>
<td>CEN, LEU2</td>
<td>(Brachmann et al., 1998)</td>
</tr>
<tr>
<td>YCplac33-MET15</td>
<td>CEN, URA3, MET15</td>
<td>De Virgilio lab</td>
</tr>
<tr>
<td>pRS413-Sch9-T570A-5HA</td>
<td>CEN, HIS3, SCH9p-Sch9-T570A-HA5</td>
<td>(Urban et al., 2007)</td>
</tr>
</tbody>
</table>

Supplemental references:

