Fixed link

Global and Local Features of Semantic Networks: Evidence from the Hebrew Mental Lexicon

Yoed N. Kenett, Dror Y. Kenett, Eshel Ben-Jacob, Miriam Faust

posted on 25 August 2011

other (424 views, 248 download, 0 comments)

Background: Semantic memory has generated much research. As such, the majority of investigations have focused on the English language, and much less on other languages, such as Hebrew. Furthermore, little research has been done on search processes within the semantic network, even though they are abundant within cognitive semantic phenomena. Methodology/Principal Findings: We examine a unique dataset of free association norms to a set of target words and make use of correlation and network theory methodologies to investigate the global and local features of the Hebrew lexicon. The global features of the lexicon are investigated through the use of association correlations – correlations between target words, based on their association responses similarity; the local features of the lexicon are investigated through the use of association dependencies – the influence words have in the network on other words. Conclusions/Significance: Our investigation uncovered Small-World Network features of the Hebrew lexicon, specifically a high clustering coefficient and a scale-free distribution, and provides means to examine how words group together into semantically related ‘free categories’. Our novel approach enables us to identify how words facilitate or inhibit the spread of activation within the network, and how these words influence each other. We discuss how these properties relate to classical research on spreading activation and suggest that these properties influence cognitive semantic search processes. A semantic search task, the Remote Association Test is discussed in light of our findings.