In a network, we define shell $\ell$ as the set of nodes at distance $\ell$ with respect to a given node and define $r_\ell$ as the fraction of nodes outside shell $\ell$. In a transport process, information or disease usually diffuses from a random node and reach nodes shell after shell. Thus, understanding the shell structure is crucial for the study of the transport property of networks. For a randomly connected network with given degree distribution, we derive analytically the degree distribution and average degree of the nodes residing outside shell $\ell$ as a function of $r_\ell$. Further, we find that $r_\ell$ follows an iterative functional form $r_\ell=\phi(r_{\ell-1})$, where $\phi$ is expressed in terms of the generating function of the original degree distribution of the network. Our results can explain the power-law distribution of the number of nodes $B_\ell$ found in shells with $\ell$ larger than the network diameter $d$, which is the average distance between all pairs of nodes. For real world networks the theoretical prediction of $r_\ell$ deviates from the empirical $r_\ell$. We introduce a network correlation function $c(r_\ell)\equiv r_{\ell+1}/\phi(r_\ell)$ to characterize the correlations in the network, where $r_{\ell+1}$ is the empirical value and $\phi(r_\ell)$ is the theoretical prediction. $c(r_\ell)=1$ indicates perfect agreement between empirical results and theory. We apply $c(r_\ell)$ to several model and real world networks. We find that the networks fall into two distinct classes: (i) a class of {\it poorly-connected} networks with $c(r_\ell)>1$, which have larger average distances compared with randomly connected networks with the same degree distributions; and (ii) a class of {\it well-connected} networks with $c(r_\ell)<1$.

## Recent comments