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Abstract

This article present a continuous cascade model of volatility formulated

as a stochastic differential equation. Two independent Brownian motions

are introduced as random sources triggering the volatility cascade. One

multiplicatively combines with volatility; the other does so additively.

Assuming that the latter acts perturbatively on the system, then the

model parameters are estimated by application to an actual stock price

time series. Numerical calculation of the Fokker–Planck equation derived

from the stochastic differential equation is conducted using the estimated

values of parameters. The results reproduce the pdf of the empirical

volatility, the multifractality of the time series, and other empirical facts.

1 Introduction

In financial time series, past coarse-grained measures of volatility correlate bet-
ter to future fine-scale volatility than the reverse process does. Such a causal
structure of financial time series was first reported by Müller et al. [1]. Since
then, the causal structure between time scales, the flow of information from a
long-term to a short-term scale, was investigated empirically in financial mar-
kets; it has been supported by multiple studies [2, 3] as a stylized fact of finan-
cial time series [4]. The asymmetric flow of information resembles an energy
cascade found in conditions of turbulence. In a developed turbulent flow, the
energy cascades from the macroscopic spatial scale, where energy is injected
from the outside, to the microscopic spatial scale, where energy is dissipated
as heat [5, 6, 7, 8, 9]. Gashghaie et al. investigated details of the self-similar
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transformation rule of the probability density function of price fluctuations and
the nonlinear scaling law of the structure function (n-th moment of fluctua-
tions), signifying the multifractality of the time series, in their study of the time
series of foreign exchange. They pointed out the similarity of price changes in
the financial time series to the velocity difference between two spatial points in
turbulence [10, 11]. The intermittency in turbulence is a phenomenon by which
a laminar flow is interrupted by irregular bursts that occur suddenly. Such in-
termittency, which is frequently encountered in heterogeneous complex systems,
is well known in financial markets as volatility clustering [4, 12]. Intermittency
at each time scale produces a characteristic hierarchical structure designated as
multifractality [8, 9].

In the developed turbulence, the process by which mechanically generated
vortices on a macro scale deform and destabilize according to the Navier–Stokes
equation and then split into smaller vortices is regarded as an energy cascade.
A similar idea of modeling multifractal time series by a recursive random mul-
tiplication process from a coarse-grained scale to a microscopic scale has offered
an attractive means of describing financial time series [13, 14]. Chen et al.
verified the statistics of multiplier factors in the random multiplication process
of turbulent flow by empirical studies using measured data and numerical ex-
periments of Navier–Stokes equations [15]. Results show that the multiplier
factors connecting two adjacent layers follow a Cauchy distribution in which
all moments diverge, and show that they are not independent. They show
strongly negative correlation between the multiplier factors of adjacent layers.
The authors verified the statistics of multipliers calculated backward from actual
stock price fluctuations, finding a Cauchy distribution of multiplier factors and
also the strongly negative correlation between the multiplier factors in financial
markets. Results show that the discrete cascade model using the random mul-
tiplication process did not reproduce the statistical property of the multiplier
factors. Therefore, as an alternative model, a discrete random multiplicative
cascade process with additional additive stochastic process [16, 17, 18], or a
model formulated as the Fokker–Planck equation considering the cascade pro-
cess as a continuous Markov process [19, 20, 21, 22, 23] was proposed. Those
models have been applied to stock market or foreign exchange market data,
yielding empirical results including the statistics of multipliers.

This study examines a continuous cascade model of volatility formulated as
a stochastic differential equation including two independent modes of Brownian
motion: one has multiplicative coupling with volatility; the other has additive
coupling as in the discrete random multiplicative cascade process with addi-
tional additive stochastic processes described above. The model parameters are
estimated by its application to the stock price time series. Numerical calculation
of the Fokker–Planck equation derived from the stochastic differential equation
is conducted using the estimated values of parameters resulting in successful
reproduction of the pdf of the empirical volatility and the multifractality of the
time series.
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2 Materials and Methods

2.1 Continuous random cascade model

2.1.1 Stochastic differential equation

These analyses examine the following wavelet transform of the variation of the
logarithmic stock price denoted by Z(t) = logS(t)/S(0), t ∈ [0, L]:

WψZ[u, s] =

∫ +∞

−∞

Z(t)
1

s
ψ∗(

t− u

s
)dt, u ∈ [0, L], (1)

where function ψ is designated as the analyzing wavelet. When using the delta
function ψ(t) = δ(t− 1)− δ(t) as the analyzing wavelet, the wavelet transform
WψZ[u, s] = Z(u+ s) − Z(u) is exactly the logarithmic return of the period s.
Here we use the second derivative of the Gaussian functions as

ψ(t) =
d2

dt2
(e−

t
2

2 ) = (t2 − 1)e−
t
2

2 . (2)

In general, by using the n-th derivative of the function having asymptotic fast
decay as the analyzing wavelet, one can remove the local trend of m-th order
(m ≤ n− 1) because the function is orthogonal to m-th order polynomials. For
the second derivative of the Gaussian functions, the linear trends of Z(t) with
scale s have been eliminated in the wavelet transform WψZ[u, s].

The quantity used herein is the absolute value of the wavelet transform
x(λ) = |WψZ[t0, s(λ)]| for arbitrary t0, where we use the variable λ = logL/s.
Quantity x(λ) is thought to be a generalization of empirical volatility, whereas
wavelet transform WψZ[u, s] is exactly the absolute value of logarithmic return
when we use ψ(t) = δ(t− 1)− δ(t).

The following stochastic equation is used to start.

x(λ + dλ) = x(λ) · eσdB(λ)+µdλ (dλ > 0) (3)

In that equation, B(λ) represents the Brownian motion. Equation (3) expresses
that the value of the quantity x(λ+dλ) at scale λ+dλ is obtained stochastically
from x(λ) at just a slightly larger scale λ by multiplying the stochastic variable
W (λ, λ + dλ) = eσdB(λ)+µdλ . The stochastic multiplier W (λ, λ + dλ) follows
a logarithmic normal distribution LN(µdλ, σ2dλ) because dB(λ) ∼ N(0, dλ) .
One can derive the following stochastic differential equation, using dB(λ)2 = dλ
as

dx(λ) = x(λ+ dλ) − x(λ)

= x(λ) ·
(

eσdB(λ)+µdλ − 1
)

= x(λ) ·
(

σdB(λ) + (µ+
1

2
σ2)dλ

)

. (4)
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The solution is obtained easily using Ito’s formula as [24]

x(λ) = x(0) · eσB(λ)+µλ. (5)

The power law behavior of the q-th moment E[x(λ)q ] (q-th structure func-
tion) as a function of scale s is proved by the solution (5) as the following.

E[x(λ)q ] = E[x(0)q] exp
{

µλq +
1

2
σ2λq2

}

= E[x(0)q]
( s

L

)−µq− 1

2
σ2q2

(6)

The multifractality of signal Z(t) for which the wavelet transform follows the
stochastic equation (4) is verified because the scaling exponent τ(q) = −µq −
1
2σ

2q2 − 1 is a convex upward nonlinear function. However, in this model, the
stochastic multiplier W (λ2, λ1) = x(λ2)/x(λ1) (λ2 ≤ λ1) linking two scales
follows the logarithmic normal distribution LN(µ(λ1 − λ2), σ

2(λ1 − λ2)). It is
independent of the multiplier W (λ3, λ2) (λ3 ≤ λ2) linking two adjacent scales.
That result is contrary to the empirical results described in the Introduction.

We introduce an additional additive stochastic process as we have done into
the discrete cascade model. We first consider the following stochastic differential
equation.

dx(λ) = x(λ) · (−γMdλ+ σMdBM (λ)) + aA(λ)dλ + bA(λ)dBA(λ) (7)

The equation is produced on the assumption that Brownian motions dBM (λ)
and dBA(λ) are mutually independent. The first two terms correspond to equa-
tion (4). The origin of those random sources triggering volatility cascade in
financial markets remains unclear.

To solve the stochastic differential equation (7), we consider the following
stochastic differential equation of

dw(λ) = w(λ) · (−γMdλ+ σMdBM (λ)) (8)

which is the same as (4). Using the solution of (8)

w(λ) = w(0) · exp
{

−
(

γM +
1

2
σ2
M

)

λ+ σMBM (λ)
}

, (9)

the solution of (7) is expressed as shown below:

x(λ) = w(λ) ·
(

∫ λ

0

aA(u)

w(u)
du +

∫ λ

0

bA(u)

w(u)
dBA(u) +

x(0)

w(0)

)

. (10)
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2.1.2 Statistics of multipliers

We have mentioned the statistics of multipliers in the Introduction:

(1) The stochastic multiplier W (λ2, λ1) = x(λ2)/x(λ1) (λ2 ≤ λ1) linking two
different scales follows a Cauchy distribution.

(2) When considering the three scales λ1 < λ2 < λ3 (s1 > s2 > s3), the ad-
jacent multipliers W (λ2, λ1) = x(λ2)/x(λ1) and W (λ3, λ2) = x(λ3)/x(λ2)
show strongly negative correlation.

Here we show property (1) and infer the existence of correlation between
adjacent multipliers under some reasonable approximations. Parameter σM is an
important model parameter for the signal to have multifractality. As presented
in a later section, in spite of the importance, the value of the parameter σ2

M is
tiny, about 0.02 − −0.03 in stock markets, irrespective of the stock issue. To
specifically examined the role of additional stochastic processes, we investigate
the 0-th order approximation of small σM . When setting σM = 0, the solution
(10) becomes

x(λ) =
(

∫ λ

λ0

aA(u)e
γM (u−λ0)du+

∫ λ

λ0

bA(u)e
γM (u−λ0)dBA(u) + x(λ0)

)

(11)

Therefore, the difference ∆x(λ, λ0) = x(λ) − x(λ0) follows a normal distri-
bution
N(

∫ λ0

λ
aA(u)e

γM(u−λ0)du,
∫ λ

λ0

(bA(u))
2e2γM(u−λ0)du). If one simply assumes that

x(λ0) follows a normal distribution, then the ratio ∆x(λ0, λ1)/x(λ0) of two in-
dependent stochastic variables following normal distributions follows a Cauchy
distribution. So x(λ1)/x(λ0) is the same.

By defining the differences ∆x(λ2, λ1) = x(λ2) − x(λ1) and ∆x(λ3, λ2) =
x(λ3) − x(λ2) for the three scales λ1 < λ2 < λ3, it is readily apparent that
W1 = x(λ2)/x(λ1) = 1 + ∆x(λ2, λ1)/x(λ1) and W2 = x(λ3)/x(λ2) = 1 +
∆x(λ3, λ2)/x(λ2) show correlation. In this framework, it was difficult to show
that they have strongly negative correlation. Those statistics of multipliers have
also been considered in earlier works by Siefert and Peinke [22]. The same result
can be shown using a Fokker–Planck equation under some approximations. In
a later section, we show a similar Fokker–Planck equation derived from the
stochastic differential equation (7).

2.1.3 Relation to discrete random cascade model

Assuming that ∆λ is sufficiently small, then when we use the following approx-
imation of Ito’s stochastic integration[24] as

∫ λ+∆λ

λ

bA(u)

w(u)
dBA(u) ∼

bA(λ)

w(t)
(BA(λ+∆λ)−BA(λ)), (12)
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we obtain the discrete random cascade equation as

x(λ +∆λ)

=WM (λ, λ +∆λ) · (x(λ) + aA(λ)∆λ + bA(λ)(BA(λ+∆λ)−BA(λ)), (13)

whereWM (λ, λ+∆λ) = e−(γM+ 1

2
σ2

M
)∆λ+σM (BM (λ+∆λ)−BM (λ)). The conditional

expectation value of the square of x(λ +∆λ), as the function of x2(λ),

E(x2(λ+∆λ)|x(λ)) = e(2µM+2σ2

M
)∆λ(x2(λ)+(2aA(λ)x(λ)+b

2
A(λ)),∆λ)) (14)

shows that deviation of the quadratic curve from the origin results from the
parameter bA(λ), as demonstrated from an empirical study in [18].

2.1.4 Constraint condition from the pdf of x(λ)

A remarkable feature of the probability density function (pdf) of the quantity
x(λ) = |WψZ[., s(λ)]| is the coincidence of the expected value E(|WψZ[., s(λ)]|)
with standard deviation V (|WψZ[., s(λ)]|)

1/2, as shown in Fig. 1 for the data
examined in this study (see also Fig. 10 for the pdf of x(λ)). It indicates the
constraint condition as

aA(λ)E(x(λ)) = b2A(λ). (15)

Derivation of the constraint condition (15) is given in the Appendix below.
The additional additive stochastic process in the model (7) is expected to be

a small perturbation to the basic model (4) to avoid violating multifractality.
We also impose the following condition for all scales s:

aA(s)

E(|WψZ[., s]|)
<< 1,

bA(s)

E(|WψZ[., s]|)
<< 1. (16)

The power law scaling shown in Fig. 1,

E(|WψZ[., s]|) ∼ s0.5, (17)

and condition (16) show the following constraint condition:

aA(s) ∼ s0.5, bA(s) ∼ s0.5. (18)

Inserting (18) into (15), we also have the equation

aA(1)E(|WψZ[., 1]|) = b2A(1). (19)

2.1.5 Appendix: Derivation of (15)

We introduce some notation for simplification of the description:

E1(λ) = E(x(λ)), E2(λ) = E(x2(λ)), ∆Bλ = BA(λ+dλ)−BA(λ), µM = −(γM+
1

2
σ2
M ).
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From equation (13), we have

E1(λ+ dλ) = E(WM (λ, λ + dλ) · (x(λ) + aA(λ)dλ + bA(λ)∆Bλ))

= E(WM (λ, λ + dλ))E(x(λ) + aA(λ)dλ + bA(λ)∆Bλ))

= E(WM (λ, λ + dλ))(E1(λ) + aA(λ)dλ)

= e(µM+ 1

2
σ2

M
)dλ(E1(λ) + aA(λ)dλ),

E2(λ + dλ) = E(W 2
M (λ, λ+ dλ) · (x(λ)2 + (2aA(λ)x(λ) + b2A(λ))dλ)

= E(W 2
M (λ, λ+ dλ))E(x(λ)2 + (2aA(λ)x(λ) + b2A(λ))dλ)

= E(W 2
M (λ, λ+ dλ))(E2(λ) + (2aA(λ)E1(λ) + b2A(λ))dλ))

= e(2µM+2σ2

M
)dλ(E2(λ) + (2aA(λ)E1(λ) + b2A(λ))dλ)).

We also have

E2
1(λ+ dλ) = e(2µM+σ2

M
)dλ(E2

1 (λ) + 2aA(λ)E1(λ)dλ).

Because of the coincidence of the expected value and the standard deviation, we
have E2(λ) = 2E2

1(λ) and E2(λ+dλ) = 2E2
1(λ+dλ). Inserting those equalities,

and using approximation eσ
2

M
dλ = 1, we have the constraint condition (15).

2.2 Fokker–Planck equation

We can derive the Fokker–Planck equation for the stochastic process {x(λ)}
expressed by the stochastic differential equation (7) as the following, which is
the master equation that the density of the transition probability p(x, λ|x0, λ0)
follows[24].

∂

∂λ
p(x, λ|x0, λ0)

=
[

−
∂

∂x
D1(λ, x) +

1

2

∂2

∂x2
D2(λ, x)

]

p(x, λ|x0, λ0) (20)

Therein, the functions D1(λ, x) and D2(λ, x) are defined as

D1(λ, x) = aA(λ)− γMx,

D2(λ, x) = bA(λ)
2 + σ2

Mx
2. (21)
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The k-th moment of the change δx(λ) = x(λ + δλ) − x(λ) induced by the
infinitesimal scale transformation δλ is derived as shown below.

E(δxk|x(λ) = x)

=

∫ +∞

−∞

(y − x)kp(y, λ+ δλ|x, λ)dy

=

∫ +∞

−∞

(y − x)k
(

p(y, λ|x, λ) + δλ
∂

∂λ′
p(y, λ′|x, λ)

∣

∣

λ′=λ
+O(δλ2)

)

dy

=

∫ +∞

−∞

(y − x)k
(

δλ
[

−
∂

∂y
D1(λ

′, y) +
1

2

∂2

∂y2
D2(λ

′, y)
]

p(y, λ′|x, λ)
∣

∣

λ′=λ
+O(δλ2)

)

dy

=

∫ +∞

−∞

(

δλ
[

k(y − x)k−1D1(λ, y) +
1

2
k(

∂

∂y
(y − x)k−1)D2(λ, y)

]

δ(y − x) +O(δλ2)
)

d

(22)

Therein, we used the identity p(y, λ|x, λ) = δ(y − x). Coefficients D1(λ, x)
and D2(λ, x) show a relation to the first and second moments of δx(λ) in the
following way.

lim
δλ→0

E(δxk|x(λ) = x)

δλ
=

{

Dk(λ, x) k = 1, 2

0 others
(23)

Coefficients Dk are designated as Kramers–Moyal coefficients[24, 25]. We use
equation (23) to estimate the function aA(λ) and bA(λ) and parameters γM and
σM . To validate the model (7), it is necessary to confirm vanishing of the k-th
moments for 3 ≤ k in the limit of δλ → 0. Renner et al. proposed almost
identical equations with (20) in the literature [20, 21], in which they deal with
the price change itself as an analogy of the velocity difference in turbulence
[19]. They derived a Fokker–Planck equation as a result of their empirical
studies using Kramers–Moyal expansion of the Chapman–Kolmogorov equation,
regarding the process as a Markovian process.

2.3 Empirical study

2.3.1 Data

We analyze the normalized average of the logarithmic stock prices of the con-
stituent issues of FTSE 100 index listed on the London Stock Exchange for
November 2007 through January 2009, which includes the Lehman shock of 15
September 2008 and the market crash of 8 October 2008.

2.3.2 Data processing

First, we calculate the average deseasonalized return of each issue δZi(t) =
log(Si(t))− log(Si(t− δt)), which describes the average change of the portfolio

8



as

δZ(kδt) =
1

NF

NF
∑

i=1

δZi(kδt)− µi
σi

, (24)

where µi and σi respectively denote the average and the standard deviation of
δZi and where NF represents the number of constituent stock issues (stocks).
The constituents of FTSE100 Index are updated frequently. We selected NF =
111 stocks that remained listed on the London Stock Exchange throughout the
period. Here, we set δt = 1 (min) and examine the 1-min log-return. We
excluded the overnight price change and specifically examine the intraday evo-
lutions of returns. To remove the effect of intraday U shape patterns of market
activity from the time-series, the return was divided by the standard deviation
of the corresponding time of the day for each issue i. Then we cumulate δZ(t)
to obtain the path of process Z(kδt) (k = 1, . . . , L) (Fig. 2(A)) as

Z(kδt) =

k
∑

k′=1

δZ(k′δt). (25)

3 Results

3.0.1 Multifractal analysis

First, we analyze the multifractal properties of the path Z(t) using an approach
with wavelet-based multifractal formalism proposed by Muzy, Bacry, and Ar-
neodo [26, 27]. Initially, we define two mathematical terms. The Hölder expo-
nent α(x0) of a function f(x) at x0 is defined as the largest exponent such that
there exists an nth-order polynomial Pn(x) and constant C that satisfy

|f(x)− Pn(x− x0)| ≤ C|x − x0|
α, (26)

for x in a neighborhood of x0, characterizing the regularity of the function f(x)
at x0. The singular spectrum D(α) is the Hausdorff dimension of the set where
the Hölder exponent is equal to α, as

D(α) = dimH{x|α(x) = α}. (27)

For multifractal paths, the Hölder exponent α is distributed in a range; for
paths of the Brownian motion, which are fractal, D(0.5) = 1 and D(α) = 0 for
α 6= 0.5.

Muzy, Bacry and Arneodo proposed the wavelet transform modulus max-
ima (WTMM) method based on continuous wavelet transform of function to

9



calculate the singular spectrum D(α). We briefly sketch the WTMM method
in the Appendix below. We calculate the partition function Z(q, s) of the q-th
moment of wavelet coefficients using equation (29) for the path of our data.
Results are presented in Fig. 2(B). The partition function Z(q, s) for each order
q shows power law behavior in the range of scales s/L < 2−5. Exponents τ(q)
are derived by the equation (30). Figure 2(C) shows that it is a convex function
of q. Those results underscore the multifractality of the data path. The singular
spectrum D(α) derived as the Legendre transformation of the function τ(q) by
equation (31) is a convex function that has compact support [0.25, 0.79] taking
the peak at α = 0.53, as shown in Fig. 2(D).

3.0.2 Appendix: WTMM method

The WTMM method builds a partition function from the modulus maxima of
the wavelet transform defined at each scale s as the local maxima of |Wψ[f ](x, s)|
regarded as a function of x. Those maxima mutually connect across scales and
form ridge lines designated as maxima lines. The set L(s0) is the set of all the
maxima lines l which satisfy

(x, s) ∈ l ⇒ s ≤ s0, ∀s ≤ s0 ⇒ ∃(x, s) ∈ l. (28)

The partition function is defined by the maxima lines as

Z(q, s) =
∑

l∈L(s)

( sup
(x,s′)∈l

|Wψ [x, s
′]|)q. (29)

Assuming power-law behavior of the partition function

Z(q, s) ∼ sτ(q), (30)

one can define the exponents τ(q). The singular spectrum D(α) can be com-
puted using the Legendre transform of τ(q):

D(α) = min
q

(qα − τ(q)). (31)

3.0.3 Parameter estimations

aA and γM Parameters aA(λ) and γM are estimated by taking the limit λ1 −
λ2 → 0 of the first moment E(x1 − x2|x2 = x)/(λ1 −λ2)(22). The first moment
E(x1 − x2|x2 = x)/(λ1 − λ2) is fitted by a linear function as

E(x1 − x2|x2 = x)

dλ
= aA(λ2, dλ)− γM (λ2, dλ)x, (32)
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where dλ = λ1 − λ2. As shown in Fig. 3(a), the first moment is well fitted by
a linear function. Fitting of this kind is applied to various λ1 = log(L/s1) and
λ2 = log(L/s2) combinations (Fig. 3(B)). Taking the limit dλ→ 0 (ds/s = (s2−
s1)/s2 → 0), one obtains aA(λ2) = limdλ→0 aA(λ2, dλ)(aA(s2) = limds/s→0 aA(s2, ds/s))
and γM = limdλ→0 γM (λ2, dλ)(γM = limds/s→0 γM (s2, ds/s)). Fig. 4(A) presents
examples of aA(s2, ds/s) and nonlinear fittings by the function log(aA(s, ds/s)) =
a+ b(ds/s)+ c(ds/s)2. We estimate aA(s) by aA(s) = exp(a) for each line. The
result is presented in Fig. 4(B). The solid line is the least-squares fit aA(s) to a
power law function as

log(aA(s)) = −1.50(0.41)+ 0.58(0.11) log s, (33)

where the standard errors are in parentheses. The estimated exponent 0.58(0.11)
is consistent with the constraint condition (18) within the standard error. By
a similar extrapolation log(γM (s, ds/s)) = a + b(ds/s) + c(ds/s)2, we estimate
γM (s) = exp(a). Figure 5(A) presents examples of γM (s2, ds/s) and nonlinear
fittings. We estimate γM (s) by γM (s) = exp(a) for each line. The result is
presented in Fig. 5(B). We estimate the parameter γM by the average value
weighted by the reciprocals of the standard errors as

γM = 0.64(0.21), (34)

where the standard error is the value in the parenthesis.

bA and σM Similarly, we estimate parameters bA and σM by taking the limit
λ1 − λ2 → 0 of the second moment E((x1 − x2)

2|x2 = x)/(λ1 − λ2)(22). The
second moment E((x1−x2)

2|x2 = x)/(λ1−λ2) is fitted by a quadratic function
(a regression against x2) as

E((x1 − x2)
2|x2 = x)

dλ
= bA(λ2, dλ) + σM (λ2, dλ)x

2. (35)

As shown in Fig. 6(a), the second moment is well fitted by a quadratic function.
Fitting of this kind is applied to various λ1 and λ2 combinations (Fig. 6(B)).
Taking the limit dλ → 0, one obtains b2A(λ2) = limdλ→0 b

2
A(λ2, dλ) and σ2

M =
limdλ→0 σ

2
M (λ2, dλ). Fig. 7(A) presents examples of b2A(s2, ds/s) and nonlinear

fitting by the function log(b2A(s, ds/s)) = a + b(ds/s) + c(ds/s)2. We estimate
b2A(s) for each line by b2A(s) = exp(a). The result is presented in Fig. 7(B). The
solid line is the least-squares fit b2A(s) to a power law function as

log(b2A(s)) = −1.67(0.56) + 1.26(0.13) log s, (36)

where the standard errors are in parentheses. The estimated exponent 1.26(0.13)
is slightly higher than the constraint condition (18)(b2A(s) ∼ s). However, it
is acceptable with accuracy. By a similar extrapolation log(σ2

M (s, ds/s)) =
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a + b(ds/s) + c(ds/s)2, we estimate σ2
M (s) = exp(a). Figure 8(A) presents an

example of σ2
M (s2, ds/s). and an estimate σ2

M (s) by σ2
M (s) = exp(a) for each

line. The result is shown in Fig. 8(B). We estimate parameter σ2
M by the

average value weighted by the reciprocals of the standard errors.

σ2
M = 0.05(0.03) (37)

Therein the standard error is in the parenthesis.

Higher moments Similarly, it is possible to show the k-th (3 ≤ k) mo-
ment E((x1 − x2)

k|x2 = x)/(λ1 − λ2) of the transition probability density
p(x1, λ1|λ2, x2) vanishes in the limit λ1 − λ2 → 0 . As portrayed in Fig. 9(A),
the fourth moment is well fitted by a quartic function. Applying the fitting
to various λ1 and λ2 combinations (Fig. 9(B)). we have convinced that the
fourth moment vanishes in the limit dλ → 0. The Pawula theorem states that
all higher Kramers–Moyal coefficients Dk (3 ≤ k) vanish if D4 vanishes [25].
Therefore, we verified equation (23).

Numerical calculation of the Fokker–Planck equation We confirmed
that estimation of the parameter aA(λ) and bA(λ) by the E((x1 − x2)

k|x2 =
x)/(λ1 − λ2 (k = 1, 2) is consistent with the constraint condition (18) with
accuracy. If one imposes the other constraint (19), then the parameters have
the following functional form of

aA(λ(s)) = ǫs0.5

b2A(λ(s)) = 2.27ǫs, (38)

where ǫ is a small parameter. The consistent range of ǫ found by estimation
(33) and (36) is 0.15 ≤ ǫ ≤ 0.34. To fix parameter γM and σM , we use the
empirical value of the scaling exponent τ(q), which is fitted by the quadratic
function τ(q) = −1 + 0.52q − 0.013q2 (see Fig. 2(C)). One can derive τ(q) =
−1+(γM+ 1

2σ
2
M )q− 1

2σ
2
Mq

2 for the basic model (4) without additional stochastic
processes. Again using the assumption of slight perturbation, then from the
coefficients of the quadratic function, the parameters γM and σM are expected
to exist respectively in the neighborhood of γM = 0.51 and σM = 0.026. Next
we try the value of the parameters γM = 0.51, σM = 0.026 and ǫ = 0.16 for
numerical calculation of the Fokker–Planck equation. Results are presented in
Fig. 10. The initial pdf of the numerical calculation represented by the dashed
line was based on the measured pdf on scale s = 128(min). In the initial values,
the fine fluctuation was smoothed using a spline function with the rationale that
small fluctuations in the measured pdf are attributable to the finiteness of the

12



number of observations. The tails are extrapolated using a power function with
index −4.9 which is obtained empirically. For time evolution, the fourth-order
explicit Runge–Kutta method was used. The solid line is the calculation result
obtained using the estimated value of the parameters γM = 0.51, σM = 0.026
and ǫ = 0.16. The dotted line is the result obtained when ǫ = 0. The difference
between the two was very small. The results closely matched the actual pdf.

Using results of the numerical calculation of the pdf obtained at each scale,
we calculate the scaling exponent τ(q) as shown below.

E(|WψZ[u, s]|
q) ∼ sτ(q) (0 ≤ q) (39)

The result is presented in Fig. 11. No difference exists between the two numer-
ical calculation results. Both curves are convex upward, indicating multifractal
properties. Comparison with measured values is also good. These results, when
combined with consideration of the statistics of multipliers given in 2.1.2, un-
derscore the effectiveness of the continuous cascade model (7) with additive
stochastic processes proposed.

4 Discussion

The random cascade model has evolved as a model of developed turbulence.
The original model, in which the stochastic process that connects each layer of
the spatial scale is an independent random multiplication process, contradicts
results obtained through empirical research. Therefore, an improved discrete
random multiplicative cascade model with additional additive stochastic pro-
cess was proposed along with a model formulated as a Fokker–Planck equation
by considering cascade processes as a continuous Markov process. Moreover,
those models have been applied to data analysis of the stock market and the
foreign exchange market, where they have been successful. Herein, we propose
a continuous cascade model formulated as a stochastic differential equation of
volatility including two independent modes of Brownian motion: one has mul-
tiplicative coupling with volatility; the other has additive coupling, as in an
improved discrete cascade model for the stock market, with effectiveness clar-
ified by results of earlier research [18]. The model parameters were estimated
by application to a stock price time series. The Fokker–Planck equation was
derived from the stochastic differential equation as a master equation with the
transition probability density function of volatility. Furthermore, the model pa-
rameters were estimated by its application to the average stock price time series
made from FTSE100 constituents listed on the London Stock Exchange. At that
time, as an alternative variable of volatility, the wavelet transform coefficient
with the second derivative of the Gaussian function as an analyzing wavelet
was used. Numerical calculation of the Fokker–Planck equation was conducted
using the estimated parameter values. The results reported herein faithfully

13



reproduce the results of an earlier empirical study. This model includes infor-
mation about neither the time axis nor the sign of the price fluctuation, which
are necessary for a model of price fluctuations. The actual stock market exhibits
well known properties that break symmetry with respect to the time axis, such
as the causal structure from long-term to short-term scale volatility described
first in the Introduction and price–volatility correlation (Leverage effect) [4, 12].
Therefore the extension of the random cascade model to encompass these phe-
nomena remains as a subject for future work.
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Figure 4: Estimation of parameter aA(s). (A) Parameter aA(s2, ds/s) obtained
by the regressions shown in Fig. 3 and nonlinear fitting log(aA(s, ds/s)) =
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of aA(s) to the power law function.
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Figure 5: Estimation of parameter γM . (A) Parameter γM (s, ds/s) obtained by
the regressions shown in Fig. 3 and nonlinear fitting log(γM (s)) = a+b(ds/s)+
c(ds/s)2. The standard errors of regression (32) are denoted by an error bar.
(B) γM (s) = exp(a) (see the text). Standard errors of nonlinear fittings are
denoted by an error bar.
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Figure 7: Estimation of parameter bA(s). (A) Parameter bA(s2, ds/s) obtained
by the regressions shown in Fig. 6 and nonlinear fitting log(b2A(s, ds/s)) =
a+ b(ds/s) + c(ds/s)2. The standard errors of the regression (35) are denoted
by an error bar. (B) b2A(s) = exp(a) (see the text). Standard errors of nonlinear
fittings are denoted by an error bar. The solid line shows the least-squares fit
of b2A(s) to the power law function.
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Figure 8: Estimation of parameter σM . (A) Parameter σM (s, ds/s) obtained by
the regressions shown in Fig. 6 and nonlinear fitting log(σ2

M (s)) = a+b(ds/s)+
c(ds/s)2 . The standard errors of regression (35) against x2 are denoted by an
error bar. (B) σ2

M (s) = exp(a) (see the text). Standard errors of nonlinear
fittings are denoted by an error bar.
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Figure 10: The pdf of measured x(λ) and numerical calculation of the Fokker–
Planck equation. The result of numerical calculation is represented by the solid
lines. Marks are measured values. The scale is attached to each line.
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