Role of lipid biosynthesis and putative lipid transporters in AM symbiosis

Micael Correia da Silva

Master Thesis of Science in Biology

Most land plants live in an association with a distinct group of soil fungi known as arbuscular mycorrhiza (AM) fungi. In this mutualistic symbiosis, the plant host receives mineral nutrients from the fungus, in return the fungus receives carbon derived from photosynthesis. The exchange of nutrients involves a complex symbiotic interface between the membrane of branched fungal structures, the arbuscules, and the surrounding host membrane, the peri-arbuscular membrane. Until recently, the carbon delivered to AM fungi was thought to consist exclusively of carbohydrates. However, recent studies have shown that AMF lack essential genes for de novo fatty acid (FA) synthesis suggesting an external supply of lipids. Indeed, recent evidence showed that AM fungi may receive lipids from plants, but the mechanisms involved in the delivery of lipids to the fungus remain unknown. The ABCG half-size transporters STR and STR2 are known to be indispensable for arbuscular mycorrhizal symbiosis in Medicago tuncatula and Oryza sativa, and the may have a role in lipid transfer. In this study on AM in petunia, I compared the phenotype of str and the duplicated str2a and str2b and I isolated a double mutant str2a,str2b for phenotypic analysis. STR and STR2 could fonction as lipid transporter from the host to the fungus. I also investigated the expression of lipid-related genes during AM symbiosis and the effect of phosphate on these genes. I show that that STR2A and STR2B act redundantly, and that their function is essential for arbuscule development. Finally, my studies show that several lipid-related genes are induced in mycorrhizal Petunia hybrida.

Superviseur : Professeur Didier Reinhardt