Photo-Activated Singlet Oxygen Triggered Release of CO from 17e-Rhenium(II) Dicarbonyl CORMs
Valyn Carroll
Varyii Carron
Herein we explore the singlet oxygen triggered release of CO from a series of 17e-
Re ^{II} Br ₂ (CO) ₂ L type complexes (L = bpy, bpyR ₂ , bpyX ₂ , bpyBODIPY, BODIPY). The process is initiated by photo-excitation of a Ruthenium(II) sensitizer, forming singlet oxygen in-situ. Liquid state infrared spectroscopy monitors Rhenium carbonyl vibrational modes as the reaction proceeds. A decrease of signal intensity during light exposure suggests release of CO associated with singlet oxygen generation. Novel Re ^{II} and Re ^I complexes containing fluorescent BODIPY tags are also prepared and measured in this system. Myoglobin assay and Raman microscopy are attempted as secondary methods for identifying CO release.
Prof. Dr. Fabio Zobi