Emerging Technologies in Digitalisation

  • Enseignement

    Détails

    Faculté Faculté des sciences économiques et sociales et du management
    Domaine Informatique de gestion
    Code UE-EIG.00169
    Langues Anglais
    Type d'enseignement Cours
    Cursus Master
    Semestre(s) SP-2021

    Horaires et salles

    Horaire résumé Mercredi 09:15 - 12:00, Hebdomadaire
    Heures par semaine 3

    Enseignement

    Responsables
    Enseignants
    Assistants
    Description

    In this course we will investigate emgerging technologies in the area of digitalization of enterprises such as blockchains and smart contracts, augmented and virtual reality, data warehouses, machine learning platforms, semantic technologies and others. The concrete range of technologies will be announced at the beginning of the course. The goal is to conduct explorative research on the characteristics of these technologies and the resulting opportunities for business applications.

    For this purpose, small projects will be conducted in teams for analyzing particular usage scenarios for the technologies, designing according solutions using techniques of conceptual modeling and implementing them in the form of prototypes. Following lectures for introducing the foundations of the technologies, students will set up their own projects and regularly report upon the advancement in the projects in the form of common presentations. At the end, final presentations of the projects including working prototypes and the submission of a seminal report based on scientific standards are required. For the implementation of the prototypes it is necessary to dispose of programming knowledge, e.g. in Java, Node.js, or Python.

    Moodle Link

    Objectifs de formation

    The goal of this course is to get a fundamental understanding of common technologies in the context of digitalization of enterprises and being able to create according software applications. Further, the writing of seminal papers is trained for preparing students to conduct their own research as e.g. required for master and doctoral theses.

    Softskills
    Non
    Hors domaine
    Non
    BeNeFri
    Oui
    Mobilité
    Oui
    UniPop
    Non

    Documents

    Bibliographie

    * Narayanan, Arvind, Clark, Jeremy (2017): Bitcoin's Academic
    Pedigree. ACMQueue, Volume 15, issue 4.
    https://queue.acm.org/detail.cfm?id=3136559

    * Antonopoulos, Andreas M., Wood, Gavin (2018): Mastering Ethereum.
    O’Reilly. https://github.com/ethereumbook/ethereumbook

    * Hyperledger Fabric (2020): Documentation.
    https://hyperledger-fabric.readthedocs.io/en/release-2.2/whatis.html

    * Three.js Documentation (2020): https://threejs.org/docs/

    * KNIME Analytics Documentation (2020): https://docs.knime.com/

    * RapidMiner Educational License Program (2020):
    https://rapidminer.com/educational-program/

    * R Platform Manuals (2020): https://cran.r-project.org/manuals.html

    * Protégé Documentation (2020):
    https://protegewiki.stanford.edu/wiki/Main_Page

     

  • Dates et salles
    Date Heure Type d'enseignement Lieu
    24.02.2021 09:15 - 12:00 Cours PER 21, salle B207
    03.03.2021 09:15 - 12:00 Cours PER 21, salle B207
    10.03.2021 09:15 - 12:00 Cours PER 21, salle B207
    17.03.2021 09:15 - 12:00 Cours PER 21, salle B207
    24.03.2021 09:15 - 12:00 Cours PER 21, salle B207
    31.03.2021 09:15 - 12:00 Cours PER 21, salle B207
    14.04.2021 09:15 - 12:00 Cours PER 21, salle F207
    21.04.2021 09:15 - 12:00 Cours PER 21, salle B207
    28.04.2021 09:15 - 12:00 Cours PER 21, salle B207
    05.05.2021 09:15 - 12:00 Cours PER 21, salle B207
    12.05.2021 09:15 - 12:00 Cours PER 21, salle B207
    19.05.2021 09:15 - 12:00 Cours PER 21, salle B207
    26.05.2021 09:15 - 12:00 Cours PER 21, salle B207
    02.06.2021 09:15 - 12:00 Cours PER 21, salle B207
  • Modalités d'évaluation

    Examen écrit - SP-2021, Session de rattrapage 2021

    Mode d'évaluation Par note
    Description

    Exam lenght: 90 minutes

    Only as a retake exam

    Evaluation continue - SP-2021, Session d'été 2021

    Mode d'évaluation Par note
  • Affiliation
    Valable pour les plans d'études suivants:
    Branche secondaire Master: informatique de gestion 30 [MA]
    Version: 2020/SA_V01
    Cours > Modules informatique de gestion > TMD: Technologies and Modelling for Digitalization

    Business Communication - Informatique de gestion 90 ECTS [MA]
    Version: 2020/SA_V01
    Cours - 60 ECTS > Groupe d'option > Informatique de gestion > Cours > Modules informatique de gestion > TMD: Technologies and Modelling for Digitalization

    Data Analytics 30 [MA]
    Version: 2020/SA-v01
    À choix 9 crédits ECTS > TMD: Technologies and Modelling for Digitalization

    Informatique de gestion 90 ECTS [MA] - SA/2019
    Version: 2019/SA_V01
    Cours - min. 45 ECTS > Modules informatique/informatique de gestion > TMD: Technologies and Modelling for Digitalization
    Cours - min. 45 ECTS > Modules informatique de gestion - min. 22 ECTS > TMD: Technologies and Modelling for Digitalization

    Informatique de gestion 90 ECTS [MA] - SA/2020
    Version: 2020/SA-v01
    Cours - min. 45 ECTS > Modules informatique de gestion - min. 22 ECTS > TMD: Technologies and Modelling for Digitalization
    Cours - min. 45 ECTS > Modules informatique/informatique de gestion > TMD: Technologies and Modelling for Digitalization

    MSc en informatique (BeNeFri)
    Version: 2010_2/V_02
    MSc en informatique (BeNeFri), cours, séminaires et travail de Master > T5: Information Systems and Decision Support